К сожалению, в настоящее время главные специфические законы известны только для первых форм ряда, включая термодинамическую пару. Об остальных формах придется говорить лишь в общих чертах. Однако для некоторых сложных форм удалось получить определенные интересные частные результаты, они дополнительно рассматриваются в двух последующих главах. В будущем эти результаты могут послужить основанием для соответствующих обобщений.
Что касается конкретной формы явления взаимодействия тел, то она обширна до необозримости - ведь приходится учитывать все истинно (а иногда и условно) простые явления, связанные между собой третьим и пятым началами ОТ, а также произвольное число участвующих во взаимодействии тел. Например, сюда придется отнести все законы типа всемирного тяготения Ньютона, Кулона для электрических и магнитных полюсов, Био-Савара-Лапласа, уравнения Максвелла [21, с.253] и их аналоги для различных степеней свободы и т.п. Однако здесь я упомяну одно весьма простое, но достаточно общее свойство, присущее всем различным взаимодействиям.
Предположим, что происходит взаимодействие двух тел, например окружающей среды и системы, по какой-либо одной степени свободы (n = 1). Это сопровождается обменом между средой и системой соответствующим веществом под действием сопряженной с этой степенью свободы разности интенсиалов. Очевидно, что процесс взаимодействия будет постепенно затухать и прекратится в момент, когда интенсиал системы сравняется с интенсиалом окружающей среды, то есть когда система полностью отреагирует на внешнее воздействие соответствующим изменением своего состояния, направленным на прекращение взаимодействия. Принципиально картина не изменится, если взаимодействие происходит по n степеням свободы и охватывает большое число тел.
Таким образом система стремится ослабить эффект внешнего воздействия, защититься от этого воздействия путем перестройки своих внутренних свойств. Иными словами, тело всегда стремится сохранить свою индивидуальную структуру путем соответствующего приспособления к окружающей среде. Только при слишком сильном воздействии приспособительные функции тела исчерпываются и оно может разрушиться, например расплавиться, испариться, сдеформироваться, рассыпаться и т.д., - все зависит от свойств тела и характера внешнего воздействия. Такова суть этого общего закона третьей формы явления эволюционного ряда (в отличие от этого вторая форма соответствует простому ансамблю, или телу, и всему тому, что происходит внутри самого тела, безотносительно к остальному миру). Согласно правилу вхождения, этот закон действует на всех более сложных уровнях эволюционного развития, приобретая соответствующую специфическую окраску на каждом из них.
Частным случаем этого закона служит следующий известный из химии принцип смещения равновесия Ле Шателье (1884 г.): если система находится в состоянии равновесия, то при действии на нее сил, вызывающих смещение равновесия, она переходит в такое состояние, при котором эффект внешнего воздействия ослабляется, в результате наступает равновесие на новом уровне. Согласно ОТ, если известны химические потенциалы (силы), то все ясно и без принципа Ле Шателье; если не известны, тогда этот принцип может подсказать направление возможной реакции.
Обсуждаемый закон в кибернетике определяет явление управления с прямой связью, когда окружающая среда посредством целенаправленного воздействия на систему достигает определенного изменения ее свойств. Примером такой примитивной связи может служить управление двигателем внутреннего сгорания - путем открывания или закрывания дроссельной заслонки [18, с.362; 20, с.272].
Указанный закон под именем принципа адаптации применяется также для анализа более сложных, в том числе биологических и т.д., явлений, однако надо помнить, что начинается он уже с третьей формы [1991, стр.480-482].
2. Термодинамическая пара, или принцип самофункционирования.
Термодинамическая пара - это удивительно интересное и важное явление с колоссальным набором всевозможных свойств, превосходящим все то, что было сказано ранее о трех первых явлениях ряда; ей посвящена монография [21]. Термодинамическая пара в общем случае представляет собой замкнутую цепь, состоящую из двух или более разнородных проводников, места контакта (спаи) которых находятся при различных значениях какого-либо интенсиала. В спаях образуются неодинаковые скачки второго интенсиала, что вызывает круговую циркуляцию сопряженного со вторым интенсиалом вещества. Этот круговой процесс сопровождается поглощением теплоты диссипации в одном спае и выделением в другом. В проводниках -возникают различные линейные эффекты, обусловленные взаимным влиянием различных степеней свободы системы [21, с.16].