Читаем Термодинамика реальных процессов полностью

Испытания показывают, что при частоте вращения 10000 об/мин ротационный и гироскопический эффекты, направленные в противоположные стороны, мало различаются по абсолют ной величине, в результате суммарная нескомпенсированная сила не выходит за пределы 0,5·10-5 ?, то есть за пределы погрешности измерений. Очевидно, что это предельный случай, полученный при уменьшении L. Чтобы преобладал ротационный эффект, надо увеличить R. О реальном существовании и неравенстве нулю ротационного и гироскопического эффектов в БМ-34 говорят опыты с БМ-29 (см. рис. 18, в) и БМ-33 [ТРП, стр.435-440].

6. Устройства типа БМ-35.

В качестве приборов БМ-35 я использовал упомянутые выше большой и малый авиационные гиромоторы. Здесь я остановлюсь только на опытах с большим.

Прибор подвешивается к чаше весов с помощью простейшего устройства, позволяющего ориентировать ось вращения в лю бом направлении по странам света и под любым углом к горизонту (рис. 28). Гироскоп разгоняется до нужной частоты вращения в течение 3-5 мин. Затем источник тока отключается (на рис. 28 снизу видны штырьки трехфазного разъема, направление вращения мотора регулируется поворотом розетки разъема на 180°), маховик после продолжает вращаться по инерции еще 40-50 мин. Весы снимаются с арретира и по световой шкале отсчитывается величина вертикальной составляющей внутренней нескомпенсированной силы. До момента измерения гиромотор успевает нагреться. Это сопровождается появлением заметной подъемной силы. Для ее ослабления прибор теплоизолирован слоем шнурового асбеста диаметром 4 мм, затем полиэтиленом, 21 слоем тонкой мятой бумаги и еще слоем полиэтилена.

Однако измерения на режиме замедленного вращения гироскопа сильно занижают искомый эффект и затушевывают многие важные особенности изучаемого процесса. Кроме того, реактивный момент торможения создает помехи при измерениях, стремясь повернуть чашу весов. С целью устранения всех этих неприятностей был применен промежуточный рычаг-коромысло (см. рис. 20), который, в частности, дает возможность не отключать ток перед измерениями, что резко повышает частоту вращения в момент измерений, а также позволяет изучать влияние ускорений.

Многочисленные эксперименты показывают, что весы фиксируют наибольшую величину нескомпенсированной силы при ориентации оси вращения, близкой к вертикали. При этом величина эффекта зависит от ускорений не меньше, чем от абсолютных скоростей маховика.

Любое вращающееся тело является мощным генератором хронального поля, которое вращается в ту же сторону, что и тело; именно поэтому обсуждаемый эффект назван мною смерчевым. Факт вращения поля хорошо фиксируется рамкой. При этом нет надобности ее перемещать, ибо само поле создает условия, необходимые для опрокидывания рамки. Хрональное поле гироскопа заряжает окружающие предметы, и они оказывают силовое воздействие на прибор. То же самое делает и хрональное поле экспериментатора.

Если смотреть на прибор сверху, то вращение гироскопа по часовой стрелке создает нескомпенсированную внутреннюю силу, направленную вверх. Изменение направления вращения гироскопа (изменять направление вращения Земли я не пробовал) приводит к изменению направлений действия силы и вращения поля, знак вращающегося хронального поля в обоих случаях положительный, но неподвижный БМ и его окружение заряжены плюсом и минусом одновременно.

На рис. 29, а изображена типичная зависимость вертикальной составляющей внутренней силы от времени при резком подключении гиромотора к преобразователю ПАГ-1Ф. Вначале скорость маховика близка к нулю, а ускорение максимально, поэтому сила целиком определяется ускорением. О роли ускорения можно судить по второму равенству (237) и формуле (328). При этом знаки ускорения и приращений хронала и хода времени роли не играют, ибо в уравнение Ньютона (312) ход реального времени входит в квадрате. В первый момент шкала весов делает рывок, но к 10-20 с успокаивается и показывает силу, вызванную ускорением. Ускорение постепенно уменьшается, а скорость нарастает. О роли скорости говорят формулы (237), (328) и (329).

В наших условиях роль ускорения в несколько раз выше, чем роль скорости. В течение 1-2 мин суммарная внутренняя сила (от ускорения и скорости) может даже несколько возрасти, но затем снова падает. Наконец, к 3-4 мин прибор выходит на стационарный режим, когда ускорение обращается в нуль и нескомпенсированная сила целиком определяется величиной скорости. Все это можно наблюдать на рис. 29, а, где кривая 1 соответствует облегчению прибора (внутренняя сила направлена вверх), а кривая 2 - его утяжелению (сила направлена вниз, прибор подвешен «вниз головой»).

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки