Читаем Термодинамика реальных процессов полностью

В основном уравнении (14) фактически заключены все количественные связи между всеми характеристиками явления. Если пожелать детализировать основное уравнение, то можно добавить к нему следующую систему уравнений:

N2 = Ф2(N1)

N5 = Ф5(N1)       (15)

Xi = Фi(N1))

где  Ф2 ,  Ф5  и  Фi  - соответствующие функции.

В системе уравнений (15) первые два получены из выражений (13) и (14). Под свойством (характеристикой)  Xi  можно понимать любую из характеристик явления, например  N3 ,  N6  и т.д. Таким образом, любое свойство данной формы явления есть функция меры количества формы вещества  N1 .

Меру количества формы вещества  N1 , являющуюся аргументом в уравнениях (14) и (15), условимся именовать экстенсором. Происхождение этого термина станет ясным из дальнейшего изложения.

Все сказанное справедливо также для явления взаимодействия, применительно к которому можно написать аналогичные равенства, но уже с индексом "в". Вместе с тем явление взаимодействия однозначно определяется основным явлением, то есть фактически величиной экстенсора основного явления. Следовательно, каждая характеристика явления взаимодействия тоже есть функция экстенсора  N1 , поэтому под свойством  Xi  мы вправе понимать также любую из характеристик явления взаимодействия.

Весьма существенно, что в равенствах (14) и (15) все характеристики данной формы явления (основного и взаимодействия) связаны между собой монотонно возрастающими функциями. Это непосредственно вытекает из того факта, что увеличение количества вещества  N1  сопровождается усложнением его структуры  N2 , ростом количества  N4  и качества  N5  поведения. Монотонно возрастающий характер основных функций позволит в будущем сделать далеко идущие выводы, в частности cформулировать особый принцип минимальности.

В заключение необходимо сделать следующие замечания. Должно быть ясно, что уравнения (14) и (15) в известном смысле условны, ибо в самой общей форме отражают лишь принципиальную сторону проблемы. При желании расшифровать и конкретизировать входящие в эти обобщенные уравнения характеристики и связывающие их функции приходится сталкиваться с серьезными трудностями, обусловленными, в частности, наличием большого числа разнородных веществ с их калейдоскопически разнообразными свойствами и сложнейшими условиями взаимодействия и т. д. Для простых случаев такая расшифровка приводится, например, в гл. XV. Для более сложных случаев развит весьма эффективный на практике приближенный метод условного сведения этих сложных случаев к простым (гл. XIV) [ТРП, стр.36-38].

6. Уравнение Вселенной.

Основное уравнение (14) и вытекающие из него равенства (15) справедливы для любой формы явления, в том числе для наисложнейшей, то есть для Вселенной. Следовательно, основное уравнение ОТ вполне можно рассматривать как уравнение Вселенной: в нем заключены все существующие характеристики и связи мира. Именно о таком уравнении в свое время мечтал Лаплас [53, с. 241]. Этой его мечте впоследствии было присвоено наименование мирового уравнения Лапласа. Разумеется, Лаплас имел в виду механический мир.

Из сказанного должно быть ясно, что основное уравнение ОТ, представляющее собой уравнение Вселенной, обладает предельной общностью, эта общность есть естественное следствие монопарадигмы. Более того, можно даже утверждать, что основное уравнение выражает саму парадигму, то есть философские концепции, сформулированные в физических терминах. Объективизм представлен в уравнении веществом и его поведением, которые суть объективная реальность. Согласно тому же уравнению, объективно существует органическая внутренняя однозначная (детерминистская) причинная связь между веществом и его поведением. Как следует из равенств (15), объективно существует органическая внешняя однозначная (детерминистская) причинная связь между всеми явлениями природы, понуждающая последние взаимодействовать, а следовательно, и изменяться (развиваться). Так переплетаются между собой объективизм, детерминизм, необходимость.

Условимся совокупность наиболее существенных для явления характеристик и функциональных связей, объединяющих эти характеристики, именовать законом. Основное уравнение содержит необходимый набор наиболее важных характеристик и соответствующие связи между ними, следовательно, оно в наиболее общем виде выражает основной закон ОТ. Поскольку основное уравнение (основной закон) может быть отнесено ко всей Вселенной, постольку мы вправе говорить о том, что оно заключает в себя идею единства природы и ее законов, идею всеобщей связи явлений.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки