О существовании у хрононов вибрационной степени свободы можно говорить, например, тогда, когда, обладая квантами метрического вещества, они проявляют также волновые свойства, ибо последние суть непременные следствия взаимного наложения двух самостоятельных явлений - метрического и вибрационного. Волновые свойства легко наблюдать при дифракции, например, если частицы проходят сквозь узкую щель. Соответствующий опыт выглядит следующим образом.
Простейший дифрактометр, не нуждающийся в какой бы то ни было оптике, состоит из вертикального экрана 2 со щелью шириной d и основания 3, на котором из центра щели проведены прямые линии под разными углами ? к направлению на источник хрононов 1, начиная от 0 (осевая линия) и кончая 90° (рис. 14). Для удобства использования на основании 2 вместо градусов нанесены их синусы.
Пучок хрононов, идущий от источника, огибает края щели и образует обычную дифракционную картину: прямо напротив ; щели, на осевой линии (? = 0) наблюдается максимальная интенсивность излучений - это центральная полоса, центральный максимум, за ним следуют вторичные максимумы уменьшающейся интенсивности. Максимумы чередуются с линиями нулевой интенсивности, которые подчиняются следующей закономерности:
sin ? = ? k (?/d) (310)
где k = 1, 2, 3, ... ; ? - длина волны, описываемой хрононами.
Мы будем интересоваться только максимумами, именно они фиксируются рамками. Первый вторичный максимум расположен на расстоянии (3/2)?(?/d) от осевой линии, расстояние между остальными максимумами равно ?/d , поэтому расчетная формула для определения длины волны, которую описывают хрононы, приобретает вид.
? = sin ? ? d/( k + 0,5) (311)
Здесь под k надо понимать порядковый номер вторичного максимума излучения.
Дифрактометр можно изготовить из картона, экран 2 надо обклеить полиэтиленом, ибо он не пропускает хрононы. С целью регулировки исходную щель целесообразно сделать широкой, а экран снабдить горизонтальными прорезями, в которых скользили бы два маленьких полиэтиленовых экранчика, перекрывающих эту щель до нужного размера d .
Подбором d находится расстояние ?/d между вторичными максимумами, удобное для применения рамки: с уменьшением d это расстояние возрастает. Размеры экрана и основания могут не превышать стандартного листа писчей бумаги.
Теоретически лучи от источника должны быть параллельными, а щель - бесконечно длинной (высокой). Однако на практике вполне приемлемые результаты получаются при достаточно большом расстоянии l и малом d по сравнению с высотой щели.
При измерении длины волны рамку (см. рис. 10, г) медленно перемещают влево от нулевой линии, направляя ось на середину щели. В районе первого опрокидывания (первый вторичный максимум, k = 1) рамку поводят вправо-влево на несколько миллиметров, чтобы уточнить положение максимума. Величина синуса находится путем совмещения на одной линии небольшой впадины на вершине кольца 1 (см. рис. 10, г), острия на конце выступающего центрального крепежного болта (зажима) 3 и соответствующего деления шкалы дифрактометра; при этом острие болта и впадина кольца играют роль мушки и прорези, как у ружья, и используются также при многих других измерениях. Следующее опрокидывание рамки дает второй вторичный максимум (k = 2) и т.д. Путем осреднения трех-четырех значений ? для различных k получают искомую длину волны.
Описанным методом была определена длина волны хрононов, испускаемых упомянутой выше навеской воды, которая заряжалась пальцем. При ширине щели d = 3 мм, высоте 70 мм и расстоянии l = 350 мм эта длина оказалась равной 0,54 мм.
Опыты говорят о том, что k не зависит от знака хрононов и от интенсивности излучения источника, то есть от числа i взмахов заряжающего пальца. Вместе с тем на результаты опытов известное влияние оказывают размеры системы. Например, с уменьшением расстояния l непараллельность лучей возрастает, что вносит погрешности в результаты измерений, увеличение ширины щели при неизменной ее высоте тоже ведет к погрешностям. Важно также, чтобы высота источника была велика по сравнению с шириной щели.
Необходимо отметить, что все описанные опыты по определению силы взаимодействия между хрононами, их скорости, длины волны и т.д. - проводились с одними и теми же навесками, поэтому полученные результаты вполне можно использовать для их совместного анализа с целью выяснения различных недостающих особенностей процесса. Например, скорость и длина волны частицы позволяют вычислить частоту ее колебаний v как целого. В частности для хрононов от навески воды, заряженной пальцами, имеем
v = w/? = 7400/0,54 =13700 с-1
К сожалению, найденную частоту нельзя использовать для определения энергии, приходящейся на вибрационную степень свободы хронона, ибо нам не известен коэффициент H в уравнении (260). Не зная энергии, мы не можем найти также и массу хронона по формуле (244).
Если бы мы попытались применить формулу Планка (253) для определения энергии хронона, то получили бы следующий результат: