Читаем Термодинамика реальных процессов полностью

 d? = A61d? + A62dm + A63dI + A64dH + A65d? + A66d? + A67dEм + ...;

 dРм = A71d? + A72dm + A73dI + A74dH + A75d? + A76d? + A77dEм + ...;

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

где согласно четвертому началу ОТ,

 А12 = А21 ;  А13 = А31 ;  А14 = А41 ;  А15 = А51 ;  А16 = А61 ;  А17 = А71 ;

 А23 = А32 ;  А24 = А42 ;  А25 = А52 ;  А26 = А62 ;  А27 = А72 ;

 А34 = А43 ;  А35 = А53 ;  А36 = А63 ;  А37 = А73 ;     (309)

  А45 = А54 ;  А46 = А64 ;  А47 = А74 ;

 А56 = А65 ;  А57 = А75 ;

 А67 = А76 ;  ...

В равенствах (308) и (309) представлены явления: хрональное, определяемое экстенсором  ? (хронор) и интенсиалом  ? (хронал) (см. формулу (237)); кинетическое - экстенсор  m (масса), интенсиал  ?2 (скорость в квадрате) (см. формулу (244)); кинетовращательное – экстенсор  I (момент инерции), интенсиал  ?2 (угловая скорость вращения в квадрате) (см. формулу (251)); колебательное – экстенсор  Н, интенсиал  ?2 (частота колебаний в квадрате) (см. формулу (260)); вермическое (термическое) – экстенсор  ? (вермиор), интенсиал  Т (абсолютная температура) (см. формулу (262)); электрическое - экстенсор  ? (электрический заряд), интенсиал  ? (электрический потенциал) (см. формулу (264)); магнитное - экстенсор  Ем , интенсиал  Рм (см. формулу (266)). Величина  А - коэффициенты состояния (структуры веществ), основные и перекрестные. У основных коэффициентов состояния индексы составлены из одинаковых цифр, эти коэффициенты связывают сопряженные между собой интенсиал и экстенсор, то есть характеризуют данное конкретное явление. У перекрестных коэффициентов индексы составлены из неодинаковых цифр, эти коэффициенты определяют взаимное влияние явлений, причем первая цифра соответствует данному явлению, а вторая - явлению, которое влияет на данное. Как правило, значения основных коэффициентов состояния выше значений перекрестных.

Уравнение (308) весьма примечательно, из него можно сделать много интересных выводов. Прежде всего из первой строчки видно, что хронал  ?  связанный с ходом индивидуального времени  ?  в системе простой обратной зависимостью (237) изменяется под действием изменений всех семи веществ, при этом изменение количества каждого вещества (экстенсора) представляет собой аргумент, задаваемый по произволу. Сильнее всего, конечно, величина d?  зависит от изменения количества хронального вещества, так как основной коэффициент  А11  и имеет максимальное значение.

Однако картина получается еще более наглядной, если вместо экстенсоров оперировать интенсиалами. С этой целью в первой строчке уравнения (308) все изменения экстенсоров надо заменить изменениями сопряженных с ними интенсиалов из последующих строчек. Тогда станет ясно, что в нашем хронально-метрическом мире ход реального времени в системе зависит от изменений ее скоростей движения  ?2  и вращения  ?2, частоты колебания   ?2, температуры  Т, электрического  ?  и магнитного Рм  потенциалов. Влияя на любой их этих интенсиалов, можно изменить хронал системы. В результате между нею и окружающей средой возникает разность хроналов. Согласно пятому началу ОТ, под действием этой разности будет происходить обмен хрональным веществом, и система превратится в генератор хронального поля. Чтобы такой генератор работал длительно, надо изменение хронального состояния системы повторять многократно в соответствующем круговом процессе. Обо всем этом более подробно говорится в гл. XXI и XXII.

Помимо подобного рода периодически действующих генераторов, использующих круговые процессы, или циклы, возможны также генераторы непрерывного действия. Они основаны на пятом начале ОТ, его эффекте увлечения: если какой-либо физический процесс, относящийся к посторонней степени свободы, сопровождается увлечением хрононов, тогда возникает непрерывный их поток. Примером может служить лампочка накаливания или лазерный источник; в них поток излучаемых фотонов увлекает за собой поток хрононов, которые могут быть использованы для каких-либо, в частности лечебных, целей; другой пример - поток жидкости, увлекающий хрононы.

Как видим, проблема создания хрональных генераторов теоретически, в принципиальной ее части решается сравнительно просто на основе использования связей, содержащихся в уравнениях состояния и переноса ОТ. Если эти уравнения, в частности (308) и (309), дополнить некоторыми другими условно простыми явлениями, тогда количество возможных типов генераторов возрастет калейдоскопически [ТРП, стр.325-328].

3. Хроносфера.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки