Однако в 1963 г. Мартен Шмидт, астроном обсерватории Маунт-Паломар в Калифорнии, обнаружил слабый, напоминающий звезду объект в направлении источника радиоволн, получившего обозначение 3C273 (потому что он стоит под номером 273 в третьем выпуске Кембриджского каталога радиоисточников). Измерив красное смещение нового объекта, Шмидт обнаружил, что оно слишком велико для того, чтобы его можно было приписать действию гравитационного поля. Если бы красное смещение имело гравитационную природу, объект оказался бы настолько массивным и близким к нам, что ощущалось бы его влияние на орбитальное движение планет Солнечной системы. Это заставляло предположить, что красное смещение вызвано расширением Вселенной, а значит, объект располагается очень далеко от нас. А для того чтобы мы могли его видеть на столь большом расстоянии, он должен быть исключительно ярким и излучать огромное количество энергии.
Единственным мыслимым механизмом, способным вырабатывать столько энергии, представлялся гравитационный коллапс, но не отдельной звезды, а всей центральной области галактики. Позднее был обнаружен целый ряд подобных квазизвёздных объектов, или квазаров, и у всех них отмечалось большое красное смещение. Но все они находятся слишком далеко и слишком сложны для наблюдений, которые могли бы дать убедительные доказательства существования чёрных дыр.
Следующее обнадёживающее свидетельство того, что чёрные дыры всё-таки существуют, появилось в 1967 г., когда аспирантка Кембриджского университета Джоселин Белл обнаружила, что некоторые небесные объекты излучают регулярные импульсы радиоволн. Поначалу Джоселин и её научный руководитель Энтони Хьюиш даже решили, что, возможно, ими установлен контакт с инопланетной цивилизацией в другой галактике. В самом деле, я помню, как, докладывая на семинаре о своём открытии, они обозначили первые четыре обнаруженных ими источника аббревиатурой LGM 1–4, где LGM означало Little Green Men — маленькие зелёные человечки (как принято было называть инопланетян).
В конце концов, однако, и они, и все остальные пришли к менее романтическому выводу, что эти объекты, названные пульсарами, представляют собой вращающиеся нейтронные звёзды. Пульсары испускают импульсы радиоволн в результате сложного взаимодействия их магнитных полей с окружающей материей. Это была плохая новость для авторов космических боевиков, но большое утешение для немногих учёных, веривших в то время в чёрные дыры. И первое реальное свидетельство того, что нейтронные звёзды существуют. Радиус нейтронной звезды — около 15 километров, что лишь в несколько раз больше критического радиуса, при котором звезда становится чёрной дырой. Если одна звезда может сжаться до столь малых размеров, резонно ожидать, что и другие звёзды способны уменьшиться даже до ещё меньших размеров и стать чёрными дырами.
Как можем мы надеяться обнаружить чёрные дыры, если они по определению не испускают никакого света? Это даже не поиски чёрной кошки в тёмной комнате — это поиски чёрной кошки в угольной яме! К счастью, способ есть, поскольку, как указывал ещё Джон Мичелл в своей «первопроходческой» статье 1783 г., чёрная дыра оказывает гравитационное воздействие на близлежащие объекты. Астрономы выявили целый ряд систем, в которых две звезды движутся одна вокруг другой, связанные гравитацией. Они также обнаружили системы, в которых единственная видимая звезда обращается вокруг невидимого компаньона.
Конечно, нельзя с ходу утверждать, что этот компаньон — чёрная дыра. Возможно, это просто звезда, свет которой недостаточно ярок для того, чтобы мы могли её наблюдать. Однако некоторые из таких систем (например, Х-1 в созвездии Лебедь) являются также очень мощными источниками рентгеновского излучения. Наилучшее объяснение этого феномена заключается в том, что рентгеновские лучи испускаются материей, выброшенной с поверхности видимой звезды. Падая в направлении невидимого компаньона, она приобретает спиральное движение, — как вода, устремляющаяся в слив ванны, — очень сильно разогревается и испускает рентгеновские лучи. Чтобы подобный механизм работал, невидимый объект должен быть очень маленьким — таким, как белый карлик, нейтронная звезда или чёрная дыра.
Итак, из наблюдаемого движения видимой звезды можно вывести минимально возможную массу невидимого объекта. Например, в системе Лебедь Х-1 невидимое тело по массе примерно в шесть раз превосходит наше Солнце. Согласно выводам Чандрасекара, это слишком много для того, чтобы невидимка был белым карликом. Он слишком велик и для нейтронной звезды. А значит, это должна быть чёрная дыра.