Черные дыры — один из редких случаев в истории науки, когда теория была детально разработана в виде математической модели еще до того, как появились какие-либо наблюдательные подтверждения ее справедливости. На самом деле, это был главный аргумент противников черных дыр. Разумно ли верить в существование объектов, единственным доказательством которого служат расчеты на основе сомнительной теории — общей теории относительности?
Между тем в 1963 г. Мартин Шмидт, астроном из Паломарской обсерватории, расположенной в Калифорнии, обнаружил слабый звездообразный объект в направлении источника радиоизлучения 3C273 (это источник номер 273 в третьем выпуске Кембриджского каталога радиоисточников). Измерив красное смещение этого объекта, он обнаружил, что оно слишком велико для того, чтобы быть результатом действия гравитационного поля. Если бы это красное смещение было вызвано гравитацией, этот объект оказался бы настолько массивным и близким к нам, что его присутствие влияло бы на орбиты планет Солнечной системы. Следовательно, красное смещение могло быть вызвано расширением Вселенной, а значит, объект находится очень далеко. Чтобы можно было наблюдать столь далекий объект, он должен быть очень ярким и излучать огромное количество энергии.
Единственный механизм, придуманный учеными для производства такого большого количества энергии, — это гравитационный коллапс, причем не просто звезды, а всей центральной части галактики. С тех пор было открыто множество других подобных «квазизвездных объектов» (квазаров) с большими красными смещениями. Но все они расположены слишком далеко и слишком сложны для наблюдений, чтобы представить неопровержимые доказательства существования черных дыр.
Следующим обнадеживающим свидетельством существования черных дыр стало открытие, совершенное в 1967 г. аспиранткой Кембриджского университета Джослин Белл: она обнаружила на небе объекты, испускающие регулярные импульсы радиоволн. Сначала Джослин и ее научный руководитель Энтони Хьюиш подумали, что, возможно, они вступили в контакт с инопланетной цивилизацией из нашей Галактики. И правда, докладывая о своем открытии на семинаре, они, помнится, называли первые четыре обнаруженных источника
В итоге, однако, и они, и все остальные пришли к менее фантастическому выводу о том, что эти объекты, получившие название «пульсары», представляют собой всего лишь вращающиеся нейтронные звезды. Они испускают импульсы радиоволн из-за сложного взаимодействия их магнитных полей и окружающей материи. Это стало неприятной новостью для авторов космических вестернов, но очень обнадеживающим результатом для нас — небольшой группы ученых, веривших в те времена в существование черных дыр. Это было первым доказательством существования нейтронных звезд. Радиус нейтронной звезды составляет около 15 км, это всего в несколько раз больше критического радиуса, при котором звезда становится черной дырой. Если звезда могла сжаться до столь малого размера, нет ничего неразумного в том, чтобы ожидать, что другие звезды могли сжаться до еще более компактных размеров и стать черными дырами.
Можно ли надеяться обнаружить черную дыру, если она по определению не излучает никакого света? Это похоже на поиски черной кошки в темной комнате. К счастью, способ обнаружить черные дыры существует, поскольку, как отметил Джон Мичелл в своей пионерской работе 1783 г., гравитационное поле черной дыры воздействует на близлежащие объекты. Астрономы наблюдали множество систем, в которых две звезды вращаются одна вокруг другой под воздействием гравитации. Кроме того, они наблюдали системы, в которых только одна видимая звезда вращается вокруг невидимого компаньона.