Вернемся к нашим размерностям. Как уже было сказано, в топологии существуют только две фундаментальные одномерные формы: прямая линия, которая идентична любой волнистой линии, и окружность, которая идентична любой петле — вытянутой, волнистой или даже имеющей форму квадрата — любой, какую только можно себе представить. Двухмерные пространства также можно разделить на два фундаментальных типа: это либо сферы, либо бублики. Тополог рассматривает любую двухмерную поверхность как сферу в том случае, если в ней нет дырок, при этом включая в эту категорию такие привычные нам геометрические тела, как кубы, призмы, пирамиды и даже похожие на дыни объекты, которые носят название эллипсоидов.
Вся разница между бубликом и сферой состоит исключительно в наличии дырки в первом и отсутствии ее во второй: неважно, насколько сильно вы деформировали сферу, — пока вы не проделаете в ней дырку, вы ни за что не получите из нее бублик, и наоборот. Другими словами, нельзя проделать ни одной новой дырки в объекте или разорвать его каким-то другим образом, не изменив при этом его топологию. И наоборот, тополог считает две формы функционально эквивалентными, если, вылепив их из пластичной глины или пластилина, можно трансформировать одну в другую, только сжимая и растягивая, но не разрывая ее.
Рис. 1.1. В топологии существуют два вида одномерных пространств, принципиально отличных друг от друга: линия и окружность. Можно преобразовать окружность в петлю любой формы, но превратить окружность в линию, не разрезая ее, невозможно. Двухмерные поверхности, являющиеся
Бублик с одной дыркой называется
Сделанное выше утверждение о существовании только двух возможных двухмерных форм — бублика и сферы, справедливо лишь в случае, когда мы ограничиваемся ориентируемыми поверхностями, а именно о таких поверхностях мы в основном и будем говорить в этой книге. Мяч, например, имеет две стороны — внутреннюю и внешнюю, и то же самое справедливо в отношении велосипедной камеры. Но существуют и более сложные поверхности — односторонние, или «неориентируемые», такие как бутылка Клейна или лента Мёбиуса, для которых указанное утверждение не верно.
Рис. 1.2. В топологии сфера, куб и тетраэдр (как и многие другие геометрические тела) рассматриваются как эквивалентные, поскольку они могут быть получены друг из друга путем деформации, растяжения или сжатия без разрывов и разрезов
Рис. 1.3. Поверхности нулевого, первого, второго и третьего рода; термин «род» означает число дырок
Когда количество измерений превышает два, число возможных форм резко возрастает. Рассматривая пространства с большим числом измерений, мы должны допускать движения в тех направлениях, которые мы не в состоянии наглядно себе представить. Замечу, что речь идет не о тех направлениях, которые лежат, скажем, между направлением на север и направлением на запад (например, на северо-запад) и даже не о направлениях типа «к северу через северо-запад». Речь о таких направлениях, которые можно указать, только выйдя за пределы привычной нам системы координат, держа путь вдоль оси, которую только предстоит нарисовать.
Один из первых крупных прорывов на пути к изображению многомерных пространств был совершен в XVII веке великим Рене Декартом, французским математиком, философом, ученым и писателем. Впрочем, для меня он в первую очередь — геометр. В числе прочих вкладов в науку Декарт показал, что мышление на языке координат гораздо продуктивнее геометрических построений.
Система координат, которую он создал и которая сейчас носит название декартовой, объединила алгебру и геометрию. В узком смысле Декарт показал, что, построив три оси (