Последние два фрагмента нашей мозаики — классы Черна и кривизна Риччи — возникли из попыток геометров обобщить одномерные римановы поверхности на случай многих измерений и затем попытаться математически описать различия между ними. Это привело к возникновению важной теоремы, относящейся к компактным римановым поверхностям, — как, впрочем, и ко всем компактным поверхностям, не имеющим границ. Определение
Теорема, сформулированная в XIX веке Карлом Фридрихом Гауссом и французским математиком Пьером Бонне, связала геометрию поверхности с ее топологией.
Согласно формуле Гаусса-Бонне, общая гауссова кривизна подобных поверхностей равна произведению эйлеровой характеристики поверхности на
Вернемся к формуле Гаусса-Бонне. Общая гауссова кривизна двухмерной сферы будет равна
Для имеющих одно комплексное измерение римановых поверхностей существует только один класс Черна, а именно первый, в данном случае совпадающий с эйлеровой характеристикой. Количество классов Черна для конкретного многообразия зависит от количества измерений. К примеру, многообразие с двумя комплексными измерениями имеет первый и второй классы Черна. Многообразия, представляющие большой интерес для теории струн — обладающие тремя комплексными (или шестью вещественными) измерениями, — имеют три класса Черна. В этом случае первый класс Черна приписывает двухмерным подпространствам шестимерного многообразия (их можно представить как набитую двухмерными листами бумаги трехмерную комнату) определенные целые коэффициенты. Второй класс Черна присваивает коэффициенты четырехмерным подмногообразиям шестимерного пространства. Третий класс присваивает определенное число, а именно эйлерову характеристику , всему многообразию, имеющему три комплексные размерности и шесть вещественных. Для многообразий, имеющих
Рис. 4.5. Ориентируемая (двухсторонняя) поверхность в топологии описывается при помощи ее эйлеровой характеристики, или числа Эйлера. Для многогранника, являющегося геометрическим телом с плоскими гранями и прямыми ребрами, эйлерову характеристику можно рассчитать по простой формуле. Эйлерова характеристика, которая обозначается греческой буквой (хи), равна числу вершин минус число ребер плюс число граней. Для прямоугольной призмы или «коробки» в этом примере число Эйлера равно двум. Для тетраэдра это число также равно двум