Читаем Теория струн и скрытые измерения вселенной полностью

Для дальнейшего упрощения полученной картины приравняем Y(t) к нулю и таким образом ограничимся осью x. Затем начнем движение с постоянной скоростью вдоль оси x из точки 0 в точку 1. Если время также будет изменяться от 0 до 1, то уравнение движения будет иметь вид X(t) = t, и при Y(t) = 0, что предполагалось изначально, производная X'(t) = 1, поскольку производная от X в данном случае берется по отношению ко времени, а значение X всегда равно значению времени. Если представить производную в виде отношения, то последнее уравнение станет очевидным: в этом примере производная по X — это отношение изменения переменной X к изменению переменной X, а любое отношение такого вида — с одинаковым числителем и знаменателем — всегда равно 1.

Таким образом, пугающее своим видом выражение, полученное двумя абзацами выше, которое необходимо было каким-то образом проинтегрировать, чтобы получить из него длину, свелось к выражению 2/(1 — x2). Нетрудно заметить, что когда x стремится к единице, это отношение стремится к бесконечности, и точно так же стремится к бесконечности, или, как говорят математики, расходится, и его интеграл.

Важно отметить, что из стремления к бесконечности метрических коэффициентов — в данном случае G11 и G22 — еще не следует, что расстояние до границы также стремится к бесконечности. Но именно это имеет место в случае метрики Пуанкаре на единичном круге. Рассмотрим внимательнее, что происходит с этими значениями при движении в направлении от центра круга с течением времени. В начальной точке, где x = 0 и y = 0, оба коэффициента, G11 и G22 равны 4. Однако при приближении к границе круга, где сумма квадратов x и y близка к 1, метрические коэффициенты резко возрастают, как и длины тангенциальных векторов. К примеру, когда x = 0,7 и y = 0,7, G11 и G22 равны 10 000. При x = 0,705 и y = 0,705 значения коэффициентов будут больше 100 000; а для x = 0,7071 и y = 0,7071 — превысят 10 миллиардов. При приближении к границе круга эти коэффициенты будут не просто возрастать, но в конце концов устремятся к бесконечности — так же, как и расстояния до границы. Если бы вы были жуком, ползущим по поверхности в направлении границы круга, то, к величайшему огорчению, вы никогда бы ее не достигли. Впрочем, вы бы ничего не потеряли, поскольку данная поверхность не имеет границы в принципе. Если поместить открытый единичный круг на плоскость, то он приобретет границу в виде единичной окружности, являющейся частью данной плоскости. Но сам единичный круг Пуанкаре границы не имеет, и любой жук, пытающийся до нее добраться, умрет, так и не осуществив своей мечты. Этот непривычный и, возможно, противоречащий интуиции факт является результатом отрицательной кривизны единичного круга, обусловленной метрикой Пуанкаре.

Мы потратили некоторое время на обсуждение понятия метрики, для того чтобы уяснить для себя сущность кэлеровой метрики и кэлерового многообразия — многообразия, оснащенного подобной метрикой. Определить, является ли та или иная метрика кэлеровой, можно, исследуя ее изменение при переходе от одной точки к другой. Кэлеровы многообразия являются подклассом комплексных многообразий, известных как эрмитовы многообразия. При помещении начала комплексной системы координат в любую точку эрмитового многообразия метрика будет совпадать со стандартной евклидовой метрикой для данной точки. Однако при смещении из этой точки метрика становится все более и более неевклидовой. Выражаясь более строго, при смещении из начала координат на расстояние (эпсилон) метрические коэффициенты сами по себе изменятся на величину порядка . Такие многообразия принято характеризовать как евклидовы многообразия первого рода. Таким образом, если составляет одну тысячную миллиметра, то при смещении на коэффициенты эрмитовой метрики останутся постоянными в пределах одной тысячной миллиметра или около того. Кэлеровы многообразия являются евклидовыми многообразиями второго рода, что означает еще большую стабильность их метрики; метрические коэффициенты на кэлеровом многообразии при смещении из начала координат на изменяются как 2. Продолжая предыдущий пример, для кэлерова многообразия при смещении на = 0,001 мм метрика изменится на 0,000001 мм.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука