Читаем Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных полностью

Этот термин появился благодаря пагубной практике проводить бесконечное множество проверок значимости без учета их количества. Почему это становится проблемой, понять несложно. Предположим, что мы проверяем 100 никак не связанных между собой гипотез, каждая из которых верна, но нам это неизвестно. Далее предположим, что мы рассматриваем p-значение на уровне 2 % для любой из этих 100 гипотез как достаточно низкое, чтобы отнестись к ней с сомнением. Для каждой взятой в отдельности проверки значимости это вполне разумно, поскольку означает, что вероятность ложных подозрений в отношении этой единственной гипотезы, если она верна, составляет всего 2 %. Но в случае, если вы проводите для каждой из 100 гипотез 100 проверок с уровнем p-значения 2 %, получается, что вероятность возникновения сомнений по крайней мере для одной из них составит 87 %. Скорее всего, вы решите, что хотя бы одна из гипотез является ошибочной, даже если все они будут верны. Вспомните о достаточно долгих пытках данных! Если вы скрываете тот факт, что провели 100 проверок, по сути, превращая их в темные данные (DD-тип 2: данные, о которых мы не знаем, что они отсутствуют), то ваши выводы могут быть очень обманчивыми.

Такая грубая ошибка допускается в научной литературе раз за разом. Рандомизированное исследование, проведенное в 1987 г. на материале четырех ведущих медицинских журналов, показало, что «74 % всех испытаний имели по меньшей мере одно сравнение, отклонившее верную гипотезу, а 60 % имели по меньшей мере одно сравнение, подтвердившее ошибочную, что явилось негативным следствием статистической проблемы множественных сравнений. Ни в одном из испытаний, в которых были обнаружены нарушения, не рассматривалось потенциальное влияние проблемы множественных сравнений на сделанные выводы». Под «негативным следствием… множественных сравнений» авторы подразумевают, что в исследованиях не учитывалась многочисленность статистических тестов, поэтому ложноположительные результаты были весьма вероятными. Хотелось бы надеяться, что эта проблема уже осталась в прошлом, однако по опыту могу сказать, что она до сих пор недостаточно осознается[122].

Давайте обратимся к классической статье по этой проблеме, написанной Крейгом Беннеттом и его коллегами, которая гораздо интереснее, чем можно ожидать судя по названию: «Нейронные корреляции межвидового восприятия, полученные после смерти атлантического лосося: аргумент в пользу коррекции множественных сравнений»[123]. Статья основана на результатах МРТ-сканирования мозга мертвого лосося, которому «показали серию фотографий, изображающих людей в различных ситуациях и… попросили определить, какие эмоции они испытывают». Вероятно, вы и без экспериментальных данных уже сделали свой вывод о реакции мозга мертвого лосося на показ фотографий. Но дело в том, что результат МРТ-сканирования представляет собой примерно 130 000 элементов объемного изображения, которые по аналогии с двумерными пикселями называют вокселями. И каждый из этих вокселей имеет небольшой шанс показать электрическую активность сканируемого материала исключительно в силу случайных фоновых шумов оборудования, а вовсе не потому, что клетки мозга мертвого лосося действительно реагируют. И хотя отдельно взятый воксель имеет лишь крошечный шанс дать ложный сигнал, вероятность его появления резко возрастает с учетом большого количества самих вокселей. Суммируйте огромное число крошечных шансов, и вот уже один, а то и более вокселей показывают электрическую активность, создавая впечатление, что некоторые нейроны мозга лосося активизируются, даже если сам лосось мертв. И действительно, Беннетт и его коллеги обнаружили несколько вокселей, подающих явные сигналы. В результате они пришли к такому выводу: «Либо мы наткнулись на поразительное открытие на стыке ихтиологии и посмертных когнитивных функций, либо что-то не так с нашим статистическим подходом. Можем ли мы заключить из этих данных, что лосось выразил свое мнение, отвечая на поставленный вопрос? Конечно, нет. Контролируя когнитивные способности субъекта, в данном случае мы полностью исключили эту возможность».

Статья Беннетта получила Шнобелевскую премию в 2012 г. Эта награда присуждается за «достижения, которые сначала заставляют людей рассмеяться, а затем – задуматься».

На эту тему есть анекдот. Экспериментатор A говорит экспериментатору Б, что у него большие проблемы с воспроизведением результатов, полученных Б. «Неудивительно, – отвечает тот, – ведь я тоже не смог получить их первые 100 раз, когда проводил эксперимент».

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии
Управление проектами. Фундаментальный курс
Управление проектами. Фундаментальный курс

В книге подробно и систематически излагаются фундаментальные положения, основные методы и инструменты управления проектами. Рассматриваются вопросы управления программами и портфелями проектов, создания систем управления проектами в компании. Подробно представлены функциональные области управления проектами – управление содержанием, сроками, качеством, стоимостью, рисками, коммуникациями, человеческими ресурсами, конфликтами, знаниями проекта. Материалы книги опираются на требования международных стандартов в сфере управления проектами.Для студентов бакалавриата и магистратуры, слушателей программ системы дополнительного образования, изучающих управление проектами, аспирантов, исследователей, а также специалистов-практиков, вовлеченных в процессы управления проектами, программами и портфелями проектов в организациях.

Коллектив авторов

Экономика