Читаем Техника и вооружение 2001 10 полностью

Из-за использования в конструкции узлов и агрегатов базовой машины обычных нелегированных сталей (в те годы автомобильной промышленности постановлением правительства запрещалось использование легированных сталей из-за дефицита их компонентов) собственная масса плавающего автомобиля была больше такой же массы американского плавающего автомобиля при примерно равной грузоподъемности. Собственная масса автомобиля составляла 7250 кг при грузоподъемности на суше 2500 кг и на воде – 3500 кг. Поэтому коэффициент использования массы автомобиля (отношение грузоподъемности к собственной массе автомобиля) на суше составлял 0,345, а на воде 0,423, т.е. они были небольшими и обусловленными в некоторой степени несовершенством конструкции части узлов и агрегатов автомобиля.

Трехлопастный гребной винт диаметром 635 мм при максимальной частоте вращения 900-920 об/мин обеспечивал тягу на швартовах 9,17 кН.При этом удельная тяга на швартовах составляла 29,0 кН/м² , а удельная мощность, отнесенная также к площади диска гребного винта, была равна 256,2 кВт/м².

На глубокой спокойной воде автомобиль с полной нагрузкой показывал скорость 10,0 км/ч, при этом число Фруда по водоизмещению было равно 0,598. Минимальный диаметр циркуляции (поворота) при движении с максимальной скоростью и при совместном использовании передних управляемых колес автомобиля и водяного руля составлял 15,0 м.

Для удаления из корпуса воды автомобиль оснащался системой водоотлива, состоящей из двух центробежных насосов (трюмного и насоса отсеков) и коллектора водоотлива. Суммарная подача (производительность) всех водоотливных средств автомобиля при максимальной частоте двигателя достигала 450 л/мин. Оба насоса работали после включения привода на гребной винт, при этом насос отсеков с максимальной подачей 150 л/мин позволял откачивать воду из левого и правого кормовых отсеков и центрального отсека при соединении их водоприемников с насосом с помощью коллектора водоотлива. Трюмный насос с подачей 300 л/мин размещался в центральном отсеке и откачивал воду только из него. На автомобиле имелся также ручной водооткачивающий насос с небольшой подачей.

Максимальная скорость автомобиля на суше – 65 км/ч. Расходы топлива по шоссе на 100 км – 47 л, на воде при скорости 10 км/ч -30 л/ч. Запас хода по топливу: по суше – 450 км, на воде – 6,5 ч.

При подготовке к серийному выпуску этот плавающий автомобиль в целом, а также отдельные его узлы и агрегаты были подвергнуты различным стендовым и пробеговым испытаниям. Например, осенью 1950 г. два опытных образца автомобиля совершили большой испытательный пробег через Крым на Кавказ с преодолением Керченского пролива в условиях достаточно серьезного волнения, прошли большие расстояния по воде реки Кубани. Весной 1951 г. автомобили испытывались в Карелии, где много озер, рек и сочетания различных типов грунтов. Длительным пробеговым испытаниям подвергались и серийные автомобили : осенью 1953 г. группа машин совершила пробег по маршруту Москва-Сталинград-Астрахань-Баку-Батуми-Крым- Одесса-Минск-Москва общей протяженностью более 10 тысяч километров и с большими проплывами по Волге, Кубани, Днестру и другим рекам. По результатам этих и других испытаний в конструкцию автомобилей вносились необходимые изменения с целью повышения их эффективности и надежности.

В июле 1951 г. группе инженеров во главе с В.А.Грачевым за создание плавающего автомомбиля ЗИЛ-485 была присуждена Государственная премия.

Плавающий автомобиль ЗИЛ-485 выпускался серийно с 1952 г. по 1963 г. и поступал на вооружение инженерных войск Советской Армии и ряда других стран. В течение этих лет некоторые узлы и агрегаты автомобиля подвергались модернизации с целью повышения их надежности и работоспособности. Всего было изготовлено около 2100 машин.

Кроме эксплуатации в армии, некоторое количество этих плавающих автомобилей в то время эксплуатировалось различными отраслями народного хозяйства страны. Например, около трехсот плавающих автомобилей этого типа были переданы в Министерство рыбного хозяйства страны для использования в прудовых и озерных рыбных хозяйствах для механизации процессов выращивания и отлова рыбы, содержания рыбных водоемов и механизации других трудоемких ручных операций.

Плавающий гусеничный транспортер К-61 (рис.5) был разработан в 1948 г. на базе артиллерийского тягача М-2 в ОКБ инженерных войск под руководством А.Ф.Кравцева. Промышленная разработка и изготовление производились на Крюковском вагоностроительном заводе Минтяжмаша под руководством Р.И.Медведика.

Перейти на страницу:

Похожие книги

История ракетно-ядерной гонки США и СССР
История ракетно-ядерной гонки США и СССР

Документально-историческая книга рассказывает об истории и особенностях создания и развития ядерного и термоядерного оружия (ЯО) и средств его доставки. О возникновении планов ядерной войны (ЯВ) в условиях ядерной монополии США, на основе идеи «превентивной ядерной войны», а затем «концепции первого, обезоруживающего ядерного удара» по СССР. О героической борьбе СССР «за выживание» против страшной опасности ЯВ сразу после окончания II мировой войны.Анализируются исторические цели и направления политики США, как страны-колонизатора, ставшей империей, стремящейся к мировому господству. Рассказано о том, как цель мирового господства вызвала к жизни колоссальные затраты и объёмы накопления смертоносного ядерного потенциала США и, – в противовес ему, – ракетно-ядерного потенциала СССР, в течение десятков лет продолжающейся и ныне «холодной войны». Рассказано, как борьба за обретение колоний странами-колонизаторами привела мир к опасности полного уничтожения человечества в огне термоядерной войны.Книга охватывает широкий комплекс вопросов, связанных с техническими особенностями ЯО, испытаний, систем доставки ЯО, разведки, систем ПВО и ПРО, предупреждения о ракетном нападении, информационного обеспечения и других систем в ходе ракетно-ядерной гонки США и СССР (России).

Евгений Вадимович Буянов

Военное дело, военная техника и вооружение