Обнаружение мультиплетов поставило перед физиками новую задачу: необходимость различать, в каких состояниях находятся в данный момент эти взаимопревращающиеся объекты. Решение было найдено – наложение на систему определенного физического поля. Так, например, наложение электрического поля сразу выделяет «положительные», «отрицательные» и «нейтральные» частицы. Положительно заряженные начинают двигаться к отрицательному электроду, отрицательно заряженные – в противоположном направлении, а нейтральные продолжают вести себя по-прежнему. Сразу становится ясно, «что есть что». Физические поля, способные играть подобную роль, получили название «калибровочных». Они служат своеобразными «сепараторами», сортирующими физические объекты. И не только объекты.
В качестве примера рассмотрим конкретный случай – упомянутую выше физическую симметрию, существующую между неподвижными системами и системами, движущимися равномерно и прямолинейно. С нею связан знаменитый «принцип инерции Галилея» – никакими внутренними наблюдениями и экспериментами невозможно обнаружить, покоится ли данная система или движется равномерно и прямолинейно. Представим себе, что мы находимся в закрытом вагоне, который плавно и совершенно бесшумно перемещается по абсолютно прямым рельсам с абсолютно постоянной скоростью. Без того, чтобы выглянуть в окно или каким-либо иным способом получить информацию извне, мы не сумеем определить, движется наш вагон или стоит на месте.
Однако и такой симметрии соответствует вполне определенное внешнее «калибровочное» поле, с помощью которого можно отличить покой от движения. Это – гравитационное поле. Оно сообщает равномерно и прямолинейно движущимся объектам определенные ускорения. Для покоящихся же объектов это ускорение будет разно нулю. А ускорение всегда можно обнаружить. Более того, наложение гравитационного поля позволяет даже различать равномерные движения с разными скоростями.
Как известно, Эйнштейн, рассматривая гравитационное поле как искривление пространства, пришел к созданию общей теории относительности – одной из величайших научных теорий XX века. Но теперь ясно, что эту теорию можно было бы построить, рассматривая гравитацию как «калибровочное» поле одной из физических симметрии. Это чрезвычайно важное соображение, которое относится не только к прошлому, но и к будущему. Дело в том, что на протяжении многих лет теоретики упорно стараются построить физическую теорию еще более общую, чем теория относительности. В том, что подобная теория в принципе должна существовать, сомнений ни у кого нет. Однако на пути к ней приходится сталкиваться с поистине фантастическими трудностями. А что, если подойти к этой проблеме, так сказать, «с тыла», решить ее с помощью симметрии?..
В поисках универсальной симметрии
Для этого необходимо отыскать в природе некую «универсальную» симметрию, гораздо более общую не только чем «галилеевская», но и чем все известные до этого.
И такая симметрия, судя по всему, обнаружена. В окружающем нас мире существуют элементарные частицы двух типов – «фермионы», из которых состоят вещественные объекты, и «бозоны» – кванты различных физических полей, связывающие вещественные частицы между собой. Казалось само собой разумеющимся, что эти два типа частиц принципиально несводимы друг к другу, что при любых превращениях, происходящих в микромире, фермионы всегда остаются фермионами, а бозоны – бозонами. К такому заключению побуждал физиков и здравый смысл: ведь никто никогда не наблюдал, чтобы окружающие предметы превращались в физические поля, и наоборот, чтобы из полей возникали те или иные вещи. Конечно, в данном случае мы немного «передергиваем» – ведь речь-то на самом деле идет о микропроцессах. Но в конечном счете любой предмет состоит из микрочастиц.
Тем не менее и на этот раз, как уже не однажды происходило в науке, здравый смысл был посрамлен. Физики-теоретики доказали, что симметрия между бозонами и фермионами, видимо, все же существует. У каждого бозона в мире фермионов есть свой «партнер», – соответствующий ему фермион. – Все частицы образуют своеобразные «пары». Если все эти частицы взаимно поменять местами, то все законы природы останутся неизменными. Эту симметрию за ее универсальный и всеобъемлющий характер стали называть «суперсимметрией».
Необходимо, правда, подчеркнуть, что полная суперсимметрия может быть получена лишь при фантастически высоких энергиях. То есть при условиях, существовавших, судя по всему, лишь в самые первые мгновения образования нашей Вселенной, когда температура была необычайно высока.
И тем не менее идея суперсимметрии необычайно плодотворна, она позволяет многое понять в тех физических процессах, которые развертывались на ранних стадиях развития Вселенной.