Как бы то ни было, но «эфирный кризис» все же был успешно разрешен именно благодаря великому физику двадцатого века Альберту Эйнштейну, который полностью изменил классические представления о пространстве и времени. Эйнштейн предположил, а его учитель и впоследствии соавтор, выдающийся немецкий математик Генрих Минковский (1864–1906), математически показал, что в действительности пространство и время нераздельны. Они как бы образуют единое четырехмерное пространство-время Минковского. Этот физический образ трудно вообразить наглядно, поскольку мы живем в трехмерном мире, описываемом евклидовой геометрией. Образ пространства Минковского удобен в различных теоретических построениях, его очень любят употреблять математики, называя его «многообразием Минковского», и физики-теоретики, среди которых принято говорить о «континууме Минковского». Не обошли его вниманием и писатели-фантасты (…космический флот погрузился в пространство Минковского и совершил внепространственный прыжок…), как правило, к сожалению, совершенно не понимающие смысла данного физического представления.
Теорию относительности принято разделять на две части — специальную теорию относительности (СТО), и общую (ОТО). Первая из них описывает различные релятивистские (от
Однозначного ответа на этот вопрос пока еще не существует. Формулы СТО только предсказывают, что если какое-либо материальное тело в своем движении приблизится к скорости света, то его масса устремится к бесконечности… Ну а с бесконечностями ученые работать тоже пока не умеют, во всяком случае это означает, что перед нами
Вторая часть теории относительности условно называется общей (ОТО). В основе ОТО лежит универсальный принцип эквивалентности инертных и гравитационных масс. Можно сказать, что это связано с искривлением окружающего нас пространства как при движении тел, так и при их притяжении, о чем и говорит общая теория относительности. Наглядно все это можно представить, если вообразить наш мир плоским эластичным листом. Тогда все тела в зависимости от их массы образуют большие и маленькие выемки, в которые и будут скатываться при их взаимодействии.
С другой стороны, точно такие же воронки эти же тела образуют при движении, будучи прикрепленными к пленке пространства. При этом глубина воронки определяется ускорением движения. Отсюда легко сделать поражающий воображение вывод о том, что в нашем трехмерном пространстве геометрия, вообще говоря, является неевклидовой и само время в различных точках пространства должно течь по-разному. Вот так физические законы превращают обыкновенный лифт в чудесное средство межпланетного передвижения, и мы можем с некоторой долей фантазии при движении вверх представить себя в атмосфере газовых гигантов — Юпитера, Сатурна, Урана или Нептуна с большим тяготением, чем на Земле, а при спуске побывать на поверхности Меркурия, Луны или Марса.
Однако уже в середине прошлого века выяснилось, что теория относительности не окончательно перечеркнула все представления о «светоносном мировом эфире». В природе можно найти среду, чем-то напоминающую своего древнего предшественника, только называется она по-новому — физическим вакуумом. Понятие физического вакуума как особой материальной среды было введено для объяснения возникновения сил физического взаимодействия. В основу этой теории легло представление о том, что тела обмениваются друг с другом так называемыми виртуальными, то есть ненаблюдаемыми, частицами. Например, в случае электромагнитных взаимодействий — виртуальными фотонами. Кроме того, в микромире были обнаружены эффекты, которые иначе, как существованием физического вакуума, было невозможно объяснить. Например, при торможении частицы высокой энергии как бы «из ничего» рождаются другие вполне реальные элементарные частицы. Это удивительное явление физики объясняют с помощью гипотезы о вакууме как «коктейле» из разнообразнейших виртуальных частиц и полей. Виртуальная «начинка» вакуума проявляется в нашем мире при энергетических взаимодействиях — наподобие того, как проявляется незримый фотографический негатив под воздействием проявителя.