В наши дни метеорологи используют в своей работе множество различных данных, от измерений на морских метеостанциях до изображений и информации, передаваемых со спутников. Также у них есть точные уравнения для описания того, как сталкивающиеся воздушные массы в атмосфере взаимодействуют и создают облака, ветер и осадки. Если у нас есть математические уравнения, контролирующие погоду, их, наверное, было бы просто объединить с метеоданными и провести вычисления на компьютере, чтобы определить, какой будет погода на следующей неделе.
Увы, даже при содействии современных суперкомпьютеров прогноз на две недели вперед по-прежнему ненадежен. Мы не в силах предсказать во всех деталях, какой будет погода сегодня, не говоря уже о более отдаленном будущем. Даже лучшие метеостанции дают показания с ограниченной точностью. Мы никогда не сможем знать достоверную скорость каждой молекулы в воздухе, истинную температуру в каждой точке пространства и точное распределение давления по всей планете, а даже небольшая вариация этих характеристик может привести к сильно отличающимся прогнозам погоды. Это породило понятие «эффект бабочки»: бабочка, машущая крыльями, создает лишь небольшие изменения в атмосфере, но в конечном счете они могут привести к торнадо или урагану на другом конце планеты, уносящему жизни и вызывающему многомиллионные разрушения.
По этой причине метеорологи рассчитывают одновременно несколько прогнозов погоды, каждый из которых отличается небольшими вариациями измерений, полученных со спутников и метеостанций по всему миру. Иногда все эти вычисления ведут к одинаковым результатам, и тогда метеорологи могут быть вполне уверены, что верно предсказывают погоду – хотя она и хаотична – на одну-две недели. Но, если в некоторых расчетах результаты совершенно различны, синоптики понимают, что никоим образом не могут достоверно предсказать погоду даже на несколько дней.
Вспомните наш хаотический маятник, раскачивающийся между тремя магнитами. Согласно компьютерному изображению, существуют области, где маленькие изменения начального положения не приводят к тому, что маятник завершает свое движение у другого магнита. То же самое происходит с погодой. Представьте, что большая черная область на рисунке соответствует погоде в пустыне: там всегда будет жарко, сколь усердно ни махала бы бабочка крыльями. То же можно сказать и про Арктику, соответствующую большой белой области. Но погода в Великобритании соответствует той области изображения, где краски быстро меняются на малом масштабе, то есть небольшие изменения положения маятника приводят к разным результатам.
Знай мы точные положения и скорости всех частиц во Вселенной, мы могли бы достоверно предсказывать будущее. Однако проблема состоит в том, что немного ошибочное определение этих начальных условий может привести к совершенно иному будущему. Вселенная может быть уподоблена часовому механизму, но мы никогда не будем знать положения шестеренок достаточно точно, чтобы воспользоваться ее детерминированной природой.
Орел или решка?
Европейский футбольный чемпионат 1968 г. проходил до введения правила о пробитии пенальти для выявления победителя матча, завершившегося вничью. Поскольку матч между сборными Италии и Советского Союза был безголевым даже после дополнительного времени, была брошена монета для определения того, какая из команд выйдет в финал. С римских времен всеми признавалось, что монета была честным способом решения спора. В конце концов, невозможно предсказать, какой стороной выпадет монета, вращающаяся в воздухе. Или это не так?
Теоретически говоря, если вы точно знаете положение монеты, скорость ее вращения и время падения, вы можете рассчитать, как она приземлится. Но, подобно погоде, не приведет ли крошечное изменение одного из этих факторов к противоположному исходу? Перси Диаконис, математик из Стэнфордского университета в Калифорнии, решил проверить, так ли непредсказуемо подкидывание монеты, как мы думаем. Если условия при каждом броске монеты одинаковы, то, согласно математике, всякий раз будет тот же исход. Но не скрываются ли в подкидываемой монете характерные черты хаоса? Что, если при небольшой вариации начальных условий эти вариации к моменту падения усиливаются настолько, что становится невозможно предсказать, выпадет орел или решка?
С помощью друзей-инженеров Диаконис построил механическую машину по подкидыванию монет, которая могла воспроизводить условия броска снова и снова. Разумеется, от случая к случаю имеются незначительные отличия, но приведут ли они к другому исходу, как было у маятника, раскачивающегося между тремя магнитами? Диаконис обнаружил, что всякий раз, когда он повторял эксперимент со своим механическим подкидывателем, монета выпадала одной и той же стороной. Затем он натренировался и сам бросать монету идентичным образом, в результате у него могли выпасть 10 орлов подряд. Если вы решаете судьбу чего-то броском монеты, удостоверьтесь, что ее не подкидывает человек, подобный Перси Диаконису.