Читаем Таблица Менделеева. Элементы уже близко полностью

По-настоящему бор раскрывается с неожиданной стороны, когда речь идёт о его производных. Возьмём нитрид бора —BN. Взятые в соотношении 1:1 элемент №5 и элемент №7 связаны такими прочными связями, что кристаллическая решетка нитрида бора такая же прочная, как кристаллическая решётка, состоящая из элемента №6 – алмаза. Трифторид бора BF3 представляет собой типичную кислоту Льюиса. В отличие от справедливых для водных растворов теорий Аррениуса и Бренстеда-Лоури, в которых к кислотам относят вещества, образующие в воде ион гидроксония Н3О+, теория кислот и оснований Льюиса универсальна, и в ней кислотой считается вещество или частица, которая может выступать акцептором пары электронов. Самая простая кислота Льюиса – протон, частица, которую мы обозначаем как Н+. Соединение BF3 может выступать в качестве кислоты Льюиса из-за того, что за счет собственных трех электронов бора и трех электронов от атомов фтора электронная оболочка бора содержит шесть электронов. Для формирования устойчивых электронных оболочек, в соответствии с правилом, впервые установленным самим Льюисом, необходимо восемь электронов. Бор в трифториде бора и подобных соединениях формирует устойчивую восьмиэлектронную оболочку, принимая в свободную электронную ячейку-орбиталь два электрона, заряжаясь при этом отрицательно.

Именно эти свойства бора позволяют применять гексагидрид дибора, он же диборан (В2Н6), в спецоперациях органического синтеза. Гидрида бора со строением ВН3 нет, но об этом чуть позже. Диборан быстро и избирательно присоединяется к двойным связям углеводородов, а продукт этого присоединения легко разрушается щелочным раствором перекиси водорода, образуя при этом спирты. Реакция протекает очень легко, не образуя побочных продуктов, и самое главное её достоинство в том, что она позволяет получать первичные спирты, которые нельзя получать присоединением воды к двойной связи непредельного углеводорода – там, в соответствии с правилом Марковникова, можно получить только вторичные спирты.

Свое название бор получил благодаря минералу, из которого был выделен, – буре, Na2B4O7x10H2O, действуя сильной кислотой на буру, можно получить борную кислоту H3ВО3, которую раньше можно было купить в аптеке. Борная кислота применялась как мягкое асептическое средство, средство для обработки щелочных ожогов кожи и даже инсектицид, правда, сейчас борную кислоту стараются не использовать – она попала под подозрение как слабый канцероген. В борной кислоте с атомом бора связаны три гидроксильные группы —ОН, если одну группу ОН заместить на остаток ароматического углеводорода – арильную группу, получается арилборная кислота, способная реагировать с арилгалогенидами с образованием связи С–С в каталитической реакции, известной как реакция Сузуки. За эту реакцию, которая позволяет получать новые органические соединения с большой скоростью и избирательностью, образуя целевые продукты с большими выходами, её первооткрыватель – Акиро Сузуки – в 2010 году был награжден Нобелевской премией.

Свою роль бор сыграл и в теории химии, точнее в теории химической связи. Произошло это тогда, когда в 1940-е годы ученые начали задумываться о том, почему молекулы BH3 не существует, а простейший бороводород – диборан, формула которого B2H6.

Элементы главных подгрупп, к которым относится бор, стремятся заполнить внешнюю оболочку до восьми электронов. В соответствии с правилом электронных октетов, устойчивой электронной оболочкой является оболочка, изоэлектронная инертным газам. Образуя химические связи (как ионные, так и ковалентные), атомы стремятся отдавать или принимать такое количество электронов, которое обеспечит наличие восьми электронов на их внешнем слое.

У бора на внешнем (валентном) уровне всего три электрона, поэтому в гипотетическом соединении BH3 на внешнем электронном слое бора будет располагаться шесть электронов. Такая конфигурация не будет устойчивой, и, соответственно, соединения с шестиэлектронной оболочкой не будут устойчивы и просто не смогут существовать. Для увеличения стабильности своих соединений бор стремится принять на эту орбиталь пары электронов уже сформированных ковалентных связей. В конечном итоге образуются так называемые многоцентровые связи, в которых пара (или большее число электронов) может одновременно принадлежать более чем двум ядрам.

Состав соединений с многоцентровыми ковалентными связями часто отличается от состава, который можно было бы предсказать, основываясь на привлечении «привычной» теории валентных связей, где одинарная, двойная или тройная связи могут образовываться только между двумя атомами (то есть облако электронов может единовременно принадлежать только двум атомам – двум центрам, формирующим связь).

Перейти на страницу:

Похожие книги

Человек 2050
Человек 2050

Эта книга расскажет о научных и социальных секретах – тайнах, которые на самом деле давно лежат на поверхности. Как в 1960-х годах заговор прервал социалистический эксперимент, находившийся на своём пике, и Россия начала разворот к архаичному и дикому капитализму? В чем ошибался Римский Клуб, и что можно противопоставить обществу "золотого миллиарда"? Каким должен быть человек будущего и каким он не сможет стать? Станет ли человек аватаром – мёртвой цифровой тенью своего былого величия или останется образом Бога, и что для этого нужно сделать? Наконец, насколько мы, люди, хорошо знаем окружающий мир, чтобы утверждать, что мы зашли в тупик?Эта книга должна воодушевить и заставить задуматься любого пытливого читателя.

Евгений Львович Именитов

Альтернативные науки и научные теории / Научно-популярная литература / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Кризис
Кризис

Генри Киссинджер – американский государственный деятель, дипломат и эксперт в области международной политики, занимал должности советника американского президента по национальной безопасности в 1969—1975 годах и государственного секретаря США с 1973 по 1977 год. Лауреат Нобелевской премии мира за 1973 год, Киссинджер – один из самых авторитетных политологов в мире.Во время работы доктора Киссинджера в администрации президента Ричарда Никсона велась регулярная распечатка стенограмм телефонных разговоров. С 2001 года стенограммы, хранящиеся в Национальном архиве США, стали общедоступными.Эти записи и комментарии к ним Генри Киссинджера передают атмосферу, в которой принимались важные решения, и характер отношений, на которых строилась американская политика.В книге обсуждаются два кризиса – арабо-израильская война на Ближнем Востоке в октябре 1973 года и окончательный уход из Вьетнама в 1975 году.В формате PDF A4 сохранен издательский макет книги.

Антон Цвицинский , Генри Киссинджер , Джаред Мейсон Даймонд , Руслан Паушу , Эл Соло

Фантастика / Экономика / Современная русская и зарубежная проза / Научно-популярная литература / Образовательная литература