Читаем Таблица Менделеева. Элементы уже близко полностью

Можно сказать, что обстоятельства открытия эйнштейния необычны даже по сравнению с другими трансурановыми элементами: рождение эйнштейния подстегнула гонка вооружений. После того как 29 августа 1949 года на полигоне в Семипалатинске была испытана первая советская атомная бомба, в США поняли, что они лишились своего козыря в противостоянии с СССР, и решили разработать еще более мощное оружие. Новая, как тогда это называлось в официальных документах, «супербомба» имела следующую принципиальную схему: запал в виде атомной бомбы должен был создать температуру и давление, достаточные, чтобы инициировать протекающее с выделением колоссальной энергии слияние атомов дейтерия (тяжелого водорода), такое же слияние дейтерия с образованием гелия происходит в звездах, в том числе и звезде по имени Солнце. «Супербомба» или, как потом её стали называть, водородная бомба, уже относится не к ядерному, а к термоядерному оружию. Испытание первого образца этого оружия США провели на атолле Эниветок в южной части Тихого океана. Сомнительная эстетика награждать бомбы именами собственными – Троица, Малыш, Толстяк – была выдержана и здесь. Благодаря вытянутой цилиндрической форме устройство получило название «Сосиска».

США испытали «Сосиску» 1 ноября 1952 года, мощность взрыва составила 10 мегатонн в тротиловом эквиваленте – в пятьсот раз больше мощности бомбы, сброшенной на Нагасаки. Островок атолла, на котором проводились испытания, был полностью уничтожен. Следует отметить, что на Эниветоке США испытало не водородную бомбу, а термоядерное устройство, показав принципиальную возможность создания оружия такого типа – «Сосиска» весила 74 тонны, её высота была чуть больше шести метров, то есть на роль бомбы устройство никак не тянуло. Первая же в мире водородная бомба, компактная и легкая настолько, что её можно было бы доставить к цели с помощью ракеты или стратегического бомбардировщика, была испытана менее чем через год после взрыва «Сосиски» – 12 августа 1953 года на Семипалатинском полигоне в СССР.

Взрыв на Эниветоке был такой мощности, что породил новый элемент. Как это стало известно? Дело в том, что испытания не ограничивались интересом «взорвется или нет» – тонны материалов, отобранных с места выпадения радиоактивных осадков во время испытания, были отправлены в радиационную лабораторию Беркли. Там среди сгоревших кораллов и пепла Альберт Гиорсо обнаружил атомы элемента с номером 99, который в апреле 1955 года получил название «эйнштейний» (первоначально для обозначения эйнштейния использовался символ «Е», к привычному сейчас символу «Es» перешли в 1960-е годы). Создание и испытания «Сосиски» были засекречены, и об открытии нового элемента сообщили только спустя три года. В августе 1955 года в журнале Physical Review была опубликована статья об открытии элемента №99, в которой его предлагали назвать эйнштейнием (Phys. Rev. 1955. 99 (3): 1048–1049).

Как же образовался эйнштейний? Во время взрыва некоторые атомы урана из атомной бомбы-запала смогли поглотить колоссальное количество нейтронов, превратившись на долю мгновения в сверхтяжёлые изотопы урана, которые претерпевали β-распад, в результате чего (если упрощать) «лишние» нейтроны превращались в пары протон—электрон, и порядковый номер элемента увеличивался. Энергия и плотность потока нейтронов во время испытания были столь значительны, что некоторые атомы урана с номером 92 превратились в атомы с номерами 99 и 100. При испытаниях образовался эйнштейний 253Es.

К счастью, сейчас, если есть необходимость в эйнштейнии (а такая необходимость может возникнуть, так как этот элемент – хорошая мишень для получения ещё более тяжёлых атомных ядер), нет необходимости взрывать термоядерные боеприпасы. Современный способ получения эйнштейния заключается либо в длительной (продолжающейся несколько лет) бомбардировке плутония нейтронами, либо в бомбардировке урана ядрами азота или кислорода. Сам по себе эйнштейний представляет собой серебристо-белый металл, достаточно летучий и с умеренной для столь тяжёлого элемента температурой плавления – 860 °C. В своих соединениях эйнштейний проявляет степень окисления +2 и +3, известны и изучены такие соединения элемента №99, как Es2O3, EsCl3, EsOCl и EsBr2.

<p>100. Фермий</p>

Круглые даты и числа всегда привлекали внимание людей, возможно, из-за того, что благодаря нашим пятипалым рукам наши далекие предки выбрали десятеричную систему счисления. Заметим, что круглых дат опасались не только в Средние века, ожидая конца времен от каждого года, кончавшегося двумя нулями, – если кто ещё помнит, в 1998–1999 годах ходили слухи о так называемой «проблеме-2000», которая идеологически была близка средневековым страданиям в ожидании скорого конца. Тем не менее заселение электронов по уровням и, следовательно, Периодический закон и Периодическая система индифферентны к числам, кратным десяти, благодаря чему элемент с номером 100 нельзя назвать каким-то особенным.

Перейти на страницу:

Похожие книги

Алхимия
Алхимия

Основой настоящего издания является переработанное воспроизведение книги Вадима Рабиновича «Алхимия как феномен средневековой культуры», вышедшей в издательстве «Наука» в 1979 году. Ее замысел — реконструировать образ средневековой алхимии в ее еретическом, взрывном противостоянии каноническому средневековью. Разнородный характер этого удивительного явления обязывает исследовать его во всех связях с иными сферами интеллектуальной жизни эпохи. При этом неизбежно проступают черты радикальных исторических преобразований средневековой культуры в ее алхимическом фокусе на пути к культуре Нового времени — науке, искусству, литературе. Книга не устарела и по сей день. В данном издании она существенно обновлена и заново проиллюстрирована. В ней появились новые разделы: «Сыны доктрины» — продолжение алхимических штудий автора и «Под знаком Уробороса» — цензурная история первого издания.Предназначается всем, кого интересует история гуманитарной мысли.

Вадим Львович Рабинович

Культурология / История / Химия / Образование и наука
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии