Хотя с наймом домашнего обслуживающего персонала в США – уборщиц, поваров и консьержей – возникают похожие проблемы, мы вряд ли увидим автономный ИИ в домах в ближайшее время. Вопреки тому, во что заставили нас поверить научно-фантастические фильмы, человекоподобные роботы для дома пока остаются мечтой. Простые, казалось бы задачи, такие как уборка помещений или присмотр за ребенком, сегодня все еще выходят далеко за пределы возможностей ИИ, а наша среда обитания, не отличающаяся порядком, содержит массу препятствий для неуклюжих роботов.
Роевой интеллект
Однако по мере того, как автономные технологии будут становиться все более гибкими и умными, мы найдем много новых и полезных вариантов их применения, в первую очередь основанных на их способности к самоуправлению. Рой автономных шмелей сможет покрасить дом всего за несколько часов. Рои термостойких беспилотных пчел смогут бороться с лесными пожарами в сотни раз эффективнее, чем современные пожарные расчеты. Автономные устройства других типов будут применяться для поисково-спасательных работ после ураганов и землетрясений и доставлять продовольствие и воду пострадавшим, а также, объединяясь с базирующимися поблизости беспилотными летательными аппаратами, эвакуировать людей из зон природных катастроф. Учитывая это, Китай почти наверняка станет лидером в производстве автономных беспилотных летательных аппаратов. В Шэньчжэне находятся производственные мощности DJI – главной компании по изготовлению дронов в мире. Известный в мире техники журналист Крис Андерсон назвал эту компанию лучшей, с которой он когда-либо имел дело[60]. DJI, по общим оценкам, уже занимает 50 % североамериканского рынка беспилотников и даже лидирует в нише продукции высокого класса. Компания направляет огромные ресурсы на научные исследования и разработки и уже выпускает беспилотные устройства для промышленного и личного использования. Роевые технологии все еще находятся в зачаточном состоянии, но в сочетании с экосистемой аппаратных устройств, выпускаемых в Шэньчжэне, можно ожидать впечатляющих результатов.
И если роевой интеллект преобразит небеса, то автономные автомобили преобразят наши дороги. В этом случае дело тоже не ограничится транспортом: нас ждет разрушение привычной городской среды и потрясения на рынке труда. Такие компании, как Google, уже продемонстрировали, что беспилотные автомобили будут намного безопаснее и эффективнее, чем управляемые людьми. Десятки стартапов, технологические гиганты, производители традиционных автомобилей и электрического автотранспорта сегодня пытаются обойти друг друга и первыми поставить технологию на коммерческую основу. Google, Baidu, Uber, DiDi, Tesla и многие другие, стремясь полностью исключить из системы водителей-людей, формируют команды специалистов, испытывают технологии и организуют сбор данных. Лидеры этой гонки – компания Google, действующая через свое независимое дочернее предприятие Waymo, и Tesla – придерживаются двух разных подходов, расхождения между которыми удивительно напоминают расхождения между подходами двух сверхдержав ИИ.
Подход Google против подхода Tesla
Google первой разработала технологию автономного вождения, но к внедрению этой технологии относилась очень осторожно. Компания исходила из того, что сначала нужно построить совершенный продукт и только после этого делать скачок к полной автономии – когда не останется сомнений, что такая система гораздо безопаснее, чем человек за рулем. Это был перфекционистский подход, призванный исключить любой риск для жизни людей или репутации корпораций. Начав исследования за много лет до других компаний, Google сильно опережала их в данной области. В попытке сократить разрыв Tesla решила внедрять новые технологии пошагово. Автомобили, выпускаемые компанией Илона Маска, уже на на раннем этапе были обеспечены простейшими автономными функциями: автопилотом для трасс, автоматическим рулевым управлением для предотвращения столкновений и системой автономной парковки. Такой подход ускорял темпы внедрения, при этом не исключая определенной степени риска.
Невзирая на различия, оба подхода требовали больших объемов самого ценного для ИИ ресурса – данных. Чтобы самоходные автомобили научились идентифицировать объекты и предсказывать движение других автомобилей и пешеходов, они должны получить колоссальное количество данных о вождении. Эти данные поступают от тысяч транспортных средств, и вся система «питается» от единого «мозга» – ядра группы алгоритмов, уполномоченных принимать решения по всему парку машин. Это означает, что когда один из автомобилей попадает в незнакомую ситуацию, то все автомобили, работающие на тех же алгоритмах, обучаются на его опыте.