Тележка едет через магазин совершенно самостоятельно, на несколько шагов опережая меня, пока я выбираю самые спелые баклажаны и самый душистый сычуаньский перец – именно они, в сочетании с остальными специями, придают лапше с говядиной ее чудесный пряный вкус. Затем тележка ведет меня в ту часть магазина, где робот тщательно месит и растягивает свежую лапшу. Когда я кладу продукты в тележку, камеры распознавания глубины, расположенные по ее краю, детектируют каждый предмет, а датчики на дне определяют его вес. Мои покупки автоматически вычеркиваются из списка продуктов на экране, а их цена прибавляется к счету. На основе данных о моих предыдущих покупках в магазине точное местонахождение и характеристики каждого из товаров были оптимизированы при помощи инструментов восприятия. На какие выкладки товаров покупатели не обращают внимания? Где они останавливаются и какие товары берут в руки, чтобы изучить внимательнее? И какие из них они в конце концов покупают? Эта матрица визуальных и коммерческих данных дает супермаркетам, использующим ИИ, возможность изучать поведение потребителей, как раньше это делали интернет-магазины. Завернув за угол, в проход между полок с вином, я вижу дружелюбного молодого человека в униформе сотрудника отдела. «Здравствуйте, мистер Ли, как поживаете? – говорит он. – К нам только что поступила партия великолепных вин из долины Напа. Мы помним, что у вашей супруги скоро день рождения, и хотели бы предложить вам десятипроцентную скидку на вашу первую покупку Opus One 2014 года. Ваша супруга обычно доверяет винодельческому хозяйству “Увертюра”, и это премиальное предложение от того же производителя. Вино, которое я рекомендую вам сейчас, имеет нотки кофе и даже темного шоколада. Хотите попробовать его?» Он знает мою слабость к калифорнийским винам, и я соглашаюсь на его предложение. Вино просто великолепное.
«Мне нравится, – говорю я, возвращая бокал молодому человеку. – Я возьму две бутылки».
«Отличный выбор – вы можете продолжить покупки, а я принесу вам вино через несколько минут. Если захотите заказать регулярную доставку на дом или ознакомиться с нашими рекомендациями и взять на пробу еще что-нибудь, то можете воспользоваться приложением “Янью” или побеседовать со мной здесь, в зале». Все служащие отдела хорошо осведомлены, дружелюбны и обучены искусству продажи дорогих товаров. Должность консультанта предполагает больше общения, чем обычная работа в супермаркете, – все сотрудники готовы обсудить ингредиенты, место происхождения продукта и то, чем он похож или не похож на те, что я попробовал раньше.
Дальнейшее путешествие по магазину проходит как всегда: тележка ведет меня по залу, а сотрудники иногда предлагают купить товары, которые, как предсказывают алгоритмы, должны мне понравиться. Во время того как очередной сотрудник упаковывает все, что я купил, мне на телефон поступает сигнал, что чек за покупки уже в моем кошельке WeChat Wallet. Пока я выхожу из магазина, тележка для покупок сама возвращается к своей стойке, а я по дороге домой, к своей семье, с удовольствием прогуляюсь пешком через два квартала.
Для походов за покупками во времена, когда мы привыкнем полагаться на силу ИИ восприятия, будет характерно одно из фундаментальных противоречий грядущей эпохи ИИ – между естественностью и революционностью. Наши повседневные занятия не так уж сильно изменятся, но оцифровка мира избавит нас от многих проблем и адаптирует услуги в соответствии с нуждами каждого человека. Удобство и изобилие онлайн-мира станут частью нашей офлайн-реальности. Не менее важно и то, что благодаря лучшему пониманию и прогнозированию привычек каждого покупателя эти магазины смогут оптимизировать цепочки поставок, сокращая тем самым количество пищевых отходов и повышая рентабельность.
Появление таких супермаркетов, как я описал, не за горами. Основные технологии уже есть, и остается лишь доработать программное обеспечение, адаптировать цепочки поставок и открыть сами магазины.
Обучение, построенное на основе ООМ
Разумеется, магазинами дело не ограничится. Те же самые приемы – визуальная идентификация, распознавание речи, создание подробного профиля пользователя на основе прошлого поведения – могут применяться для создания индивидуальных образовательных программ, в которых будут учитываться имеющиеся знания и опыт человека. Современные системы образования по-прежнему основаны на модели XIX века: все учащиеся вынуждены учиться с одинаковой скоростью, проходить один и тот же материал, в одном и том же месте и в одно и то же время. Школы работают как конвейер, переводя детей из класса в класс каждый год, независимо от того, насколько полно они усвоили то, чему их учили. Эта модель прежде имела смысл из-за ограниченности ресурсов, включая время и внимание преподавателей.
Однако ИИ поможет нам преодолеть эти ограничения. Алгоритмы на его основе могут адаптировать образовательный процесс для каждого учащегося и дать педагогам больше свободного времени для индивидуальных занятий.