Как корпоративные данные Китая, так и его корпоративная культура затрудняют применение искусственного интеллекта второй волны для традиционных компаний. Но в тех отраслях промышленности, где ИИ может, как в чехарде, «перескочить» через какой-то большой этап, Китай решительно шагает вперед. При этом относительная отсталость страны в таких областях, как финансовые услуги, превращается в трамплин для передовых приложений ИИ. На их основе строится одно из наиболее перспективных направлений в этой области – микрофинансирование. Когда Китай «перескочил» через кредитные карты сразу к мобильным платежам, в стороне осталась проблема кредитования. WeChat и Alipay позволяют снимать средства прямо с вашего банковского счета, но не дают вам возможности потратить немного больше денег до следующей зарплаты. Образовавшаяся ниша была занята ИИ-приложением Smart Finance, которое стало выдавать миллионы небольших кредитов, полагаясь исключительно на свои алгоритмы. Вместо того чтобы просить потенциального заемщика ввести сумму заработка, оно просто запрашивает доступ к некоторым данным из его телефона. Эти данные образуют своего рода цифровой отпечаток пальца, по которому с удивительной точностью можно определить, вернет ли заемщик кредит в триста долларов.
Алгоритмы глубокого обучения Smart Finance не просто рассматривают очевидные показатели, например, сколько денег в вашем кошельке WeChat. Наряду с этим они опираются на данные, которые ничего не значили бы для банковского служащего. Например, учитывают скорость, с которой вы ввели дату рождения, остаток заряда вашего телефона и тысячи других параметров.
Какое отношение аккумулятор телефона заявителя имеет к кредитоспособности? На этот вопрос нельзя ответить на основе простой причинно-следственной связи. Но это не означает, что ИИ ошибается. Это означает, что наш разум не всегда способен распознать корреляции в больших потоках данных. Обучив свои алгоритмы на миллионах данных о выплаченных и невыплаченных кредитах, компания Smart Finance выявила тысячи мельчайших особенностей, связанных с кредитоспособностью, в том числе тех, которые кажутся необъяснимыми с точки зрения здравого смысла.
Эти необычные параметры составляют то, что основатель Smart Finance Kэ Цзяо называет «новым эталоном красоты» для кредита, заменяющим необработанные данные о доходах, почтовый индекс и даже кредитный рейтинг[56].
Растущие горы данных позволяют компании совершенствовать алгоритмы, расширять клиентуру и предоставлять кредиты людям из социальных групп, обычно игнорируемых традиционным банковским сектором Китая: молодежи и рабочим-мигрантам. В конце 2017 года Smart Finance выдавала более 2 млн займов в месяц, причем процент невозвратных среди них настолько низок, что самым известным традиционным банкам остается лишь завидовать.
Теперь вас увидят
Но ИИ для бизнеса способен не только считать доллары и центы. Он также способен обеспечить качественными массовыми услугами тех, кто раньше не мог их себе позволить. Одно из самых перспективных направлений для внедрения ИИ – медицинская диагностика. Лучшие исследователи Соединенных Штатов – Эндрю Ын и Себастьян Трун – уже представили эффективные алгоритмы, диагностирующие некоторые заболевания не менее точно, чем врачи. В основе алгоритмов лежит анализ изображений: так, они могут распознать пневмонию по рентгеновским снимкам грудной клетки и рак кожи по фотографиям. Но более универсальное приложение могло бы контролировать весь процесс диагностики различных заболеваний.
В наши дни достаточными медицинскими знаниями, чтобы ставить диагнозы, обладают лишь немногочисленные люди – врачи. При этом человеческая память несовершенна, и у редкого врача хватает времени на то, чтобы следить за всеми исследованиями и достижениями науки в своей области.
Конечно, огромное количество медицинской информации разбросано по интернету, но большинству людей она ничего не говорит. Вероятность получить верный диагноз по-прежнему в значительной степени зависит от места проживания и, откровенно говоря, платежеспособности. Особенно остро это проявляется в Китае, где все хорошо обученные врачи сосредоточены в богатых городах. Уехав за пределы Пекина и Шанхая, вы, вероятно, столкнетесь со значительно более низкой квалификацией врачей. Результат? Пациенты по всей стране стараются попасть в крупные больницы, ожидая в очередях по нескольку дней и усугубляя тем самым свое состояние.