В основе ошибочной веры в то, что Соединенные Штаты являются страной передового ИИ, лежит впечатление, что мы живем в эпоху открытий и наблюдаем за тем, как элита исследователей ИИ постоянно ломает традиционные парадигмы и разгадывает старые тайны. Это впечатление подпитывается постоянным потоком захватывающих дух сообщений СМИ: искусственный интеллект диагностирует некоторые виды рака лучше, чем это делают врачи; он одержал труднейшую победу над мастерами игры в техасский холдем[12]; он самообучается без какого-либо вмешательства человека. С учетом такого повышенного внимания к каждому новому достижению случайному наблюдателю или даже эксперту-аналитику простительно полагать, что мы постоянно открываем новые горизонты исследований в области искусственного интеллекта.
Однако я считаю, что это впечатление обманчиво. Многие из якобы значительных вех представляют собой просто новые способы использовать достижения прошлого десятилетия – в первую очередь глубокого обучения и дополняющих его технологий, таких как обучение с подкреплением сигналами от среды взаимодействия и перенос обучения[13] для решения новых задач. То, что делают эти исследователи, требует большого мастерства и глубоких знаний, умения изменять сложные математические алгоритмы, манипулировать большими объемами данных, адаптировать нейронные сети под различные задачи. Для такой работы часто требуется как минимум степень кандидата наук. И тем не менее все это лишь небольшие шаги вперед – постепенное улучшение результатов последнего грандиозного прорыва в области глубокого обучения.
Эпоха внедрения
Постепенно мы начинаем применять уникальные возможности глубокого обучения для распознавания образов и схем, для прогнозирования в таких разнородных областях деятельности, как диагностика заболеваний, условия страхования, вождение автомобилей или перевод с китайского на английский. Но все эти шаги не означают, что мы стремительно приближаемся к созданию «ИИ общего назначения» или совершили какой-то прорыв. Наступила эпоха внедрения, то есть создания реальных продуктов на основе ИИ. Компаниям, которые захотят на этом заработать, понадобятся талантливые предприниматели, инженеры и менеджеры продукта.
Пионер глубокого обучения Эндрю Ын сравнил исследование ИИ с работой Томаса Эдисона над внедрением электричества: передовая технология существует сама по себе, и только поставив ее на службу человеку, можно революционизировать десятки различных отраслей промышленности. Предприниматели XIX века в короткие сроки поставили электричество на службу человеку[14]: чтобы тот мог готовить пищу, освещать помещения и приводить в действие промышленное оборудование. Точно так же современные предприниматели, опираясь на исследования ИИ, начинают ставить на службу человеку и глубокое обучение. До сего дня было проделано много сложных теоретических изысканий, теперь же пришло время предпринимателям засучить рукава и приступить к нелегкой работе по превращению алгоритмов в устойчивый бизнес. Это не уменьшит энтузиазма в области исследования ИИ – просто реализация делает академические успехи осязаемыми, что действительно меняет нашу повседневную жизнь. Наступление эры практического применения означает, что после десятилетий самоотверженных исследований мы, наконец, увидим их плоды – и именно этого я так ждал б
Поняв разницу между открытием и внедрением, мы лучше поймем, как ИИ будет влиять на нашу жизнь и какая страна станет лидером, когда дело дойдет до реализации новых технологий на практике. В эпоху открытий прогресс шел благодаря усилиям группы выдающихся ученых, и почти все они работали в США и Канаде. Их проницательность и новаторство привели к тому, что возможности компьютеров выросли быстро и радикально. Со времени зарождения глубокого обучения ни одна другая группа исследователей или инженеров не создала инноваций такого масштаба.
Эпоха данных
Итак, человечество приближается ко второму важному переходу – от эпохи экспертных знаний к эпохе данных. В наше время для создания эффективных алгоритмов ИИ нужны три составляющих: большие объемы данных, вычислительные мощности и труд способных – но не обязательно выдающихся – разработчиков алгоритмов ИИ. Чтобы с помощью глубокого обучения решать новые задачи, необходимы все три элемента, но в эпоху внедрения основную роль играют именно данные. Так получается потому, что, как только вычислительная мощность и талант разработчика достигают некоторого порога, объем данных становится решающим и определяет общую эффективность и точность алгоритма. При глубоком обучении данных не бывает слишком много. Чем больше примеров одного явления получает сеть, тем проще ей будет находить закономерности и идентифицировать вещи в реальном мире.