There was this problem: When you shake an electron, it radiates energy and so there’s a loss. That means there must he a force on it. And there must he a different force when it’s charged than when it’s not charged. (If the force were exactly the same when it was charged and not charged, in one case it would lose energy, and in the other it wouldn’t. You can’t have two different answers to the same problem.)
The standard theory was that it was the electron acting on itself that made that force (called the force of radiation reaction), and I had only electrons acting on other electrons. So I was in some difficulty, I realized, by that time. (When I was at MIT, I got the idea without noticing the problem, but by the time I got to Princeton, I knew that problem.)
What I thought was: I’ll shake this electron. It will make some nearby electron shake, and the effect back from the nearby electron would be the origin of the force of radiation reaction. So I did some calculations and took them to Wheeler.
Wheeler, right away said, “Well, that isn’t right because it varies inversely as the square of the distance of the other electrons, whereas it should not depend on any of these variables at all. It’ll also depend inversely upon the mass of the other electron; it’ll be proportional to the charge on the other electron.”
What bothered me was, I thought he must have
Then he said, “And it’ll be delayed—the wave returns late—so all you’ve described is reflected light.”
“Oh! Of course,” I said.
“But wait,” he said. “Let’s suppose it returns by advanced waves—reactions backward in time—so it comes back at the right time. We saw the effect varied inversely as the square of the distance, but suppose there are a lot of electrons, all over space: the number is proportional to the square of the distance. So maybe we can make it all compensate.”
We found out we could do that. It came out very nicely, and fit very well. It was a classical theory that could be right, even though it differed from Maxwell’s standard, or Lorentz’s standard theory. It didn’t have any trouble with the infinity of self-action, and it was ingenious. It had actions and delays, forwards and backwards in time—we called it “half-advanced and half-retarded potentials.”
Wheeler and I thought the next problem was to turn to the quantum theory of electrodynamics, which had difficulties (I thought) with the self-action of the electron. We figured if we could get rid of the difficulty first in classical physics, and then make a quantum theory out of that, we could straighten out the quantum theory as well.
Now that we had got the classical theory right, Wheeler said, “Feynman, you’re a young fella—you should give a seminar on this. You need experience in giving talks. Meanwhile, I’ll work out the quantum theory part and give a seminar on that later.”
So it was to be my first technical talk, and Wheeler made arrangements with Eugene Wigner to put it on the regular seminar schedule.
A day or two before the talk I saw Wigner in the hail. “Feynman,” he said, “I think that work you’re doing with Wheeler is very interesting, so I’ve invited Russell to the seminar.” Henry Norris Russell, the famous, great astronomer of the day, was coming to the lecture!
Wigner went on. “I think Professor von Neumann would also he interested.” Johnny von Neumann was the greatest mathematician around. “And Professor Pauli is visiting from Switzerland, it so happens, so I’ve invited Professor Pauli to come”—Pauli was a very famous physicist—and by this time, I’m turning yellow. Finally, Wigner said, “Professor Einstein only rarely comes to our weekly seminars, but your work is so interesting that I’ve invited him specially, so he’s coming, too.”
By this time I must have turned green, because Wigner said, “No, no! Don’t worry! I’ll just warn you, though: If Professor Russell falls asleep—and he will undoubtedly fall asleep—it doesn’t mean that the seminar is bad; he falls asleep in all the seminars. On the other hand, if Professor Pauli is nodding all the time, and seems to be in agreement as the seminar goes along, pay no attention. Professor Pauli has palsy.”
I went back to Wheeler and named all the big, famous people who were coming to the talk he got me to give, and told him I was uneasy about it.
“It’s all right,” he said. “Don’t worry. I’ll answer all the questions.”