Ключевое открытие теории омега-точки — это открытие класса космологических моделей, в которых, несмотря на конечность вселенной как в пространстве, так и во времени, ёмкость памяти, количество возможных шагов вычисления и эффективное снабжение энергией не имеют ограничений. Эта кажущаяся невозможность может произойти из-за исключительных условий в последние моменты коллапса вселенной в Большом сжатии. Сингулярности пространства-времени, подобные Большому взрыву и Большому сжатию, редко бывают спокойными местами, но этот момент должен быть гораздо хуже прочих. Изменится форма вселенной — из гиперсферы она превратится в трёхмерный аналог поверхности эллипсоида. Степень деформации увеличится, потом уменьшится, а потом увеличится ещё быстрее, но по отношению к другой оси. Как амплитуда, так и частота этих осцилляций будет безгранично увеличиваться по мере приближения к конечной сингулярности, так что произойдёт буквально бесконечное количество осцилляций, при том что конец наступит за конечное время. Материя, какой мы знаем её, не выживет: всё вещество, и даже сами атомы, будут разорваны гравитационными силами сдвига, вызванными деформированным пространством-временем. Однако эти силы сдвига также обеспечат неограниченный источник доступной энергии, который в принципе можно будет использовать для питания компьютера. Но как в таких условиях может существовать компьютер? Единственным «материалом», который останется для создания компьютеров, будут элементарные частицы и сама гравитация, предположительно в каких-то в высшей степени экзотических квантовых состояниях, существование которых мы (всё ещё не имея адекватной теории квантовой гравитации) сейчас не можем ни подтвердить, ни отвергнуть. (Вопрос об их экспериментальном наблюдении, конечно, не стоит.) Если подходящие состояния частиц и гравитационного поля существуют, то они также обеспечат неограниченную ёмкость памяти, и вселенная будет сжиматься так быстро, что бесконечное количество доступов к памяти станет осуществимым за конечное время до конца вселенной. Конечную точку гравитационного коллапса, Большое сжатие этой космологии, Типлер называет омега-точкой.
Итак, принцип Тьюринга означает, что не существует верхней границы количества физически возможных вычислительных шагов. Таким образом, при условии, что космология омега-точки — это (при правдоподобных допущениях) единственный тип космологии, при котором может произойти бесконечное количество шагов вычисления, мы должны заключить, что наше действительное пространство-время должно иметь форму омега-точки. Поскольку всё вычисление прекратится, как только не останется переменных, способных переносить информацию, мы можем сделать вывод, что необходимые физические переменные (возможно, квантово-гравитационные переменные) действительно существуют вплоть до омега-точки.
Скептик мог бы сказать, что рассуждение такого рода содержит серьёзную и неоправданную экстраполяцию. У нас есть опыт «универсальных» компьютеров только в самой благоприятной среде, которая даже отдалённо не напоминает конечные стадии вселенной. И у нас есть опыт выполнения на этих компьютерах только конечного числа шагов вычисления при использовании только конечного объёма памяти. Как может быть обоснована экстраполяция от этих конечных чисел к бесконечности? Другими словами, как мы можем знать, что принцип Тьюринга в его сильной форме строго истинен? Какие существуют доказательства того, что реальность обеспечивает нечто большее, чем
Конечно, этот скептик — индуктивист. Более того, точно такой тип мышления (как я доказал в предыдущей главе) мешает нам понять и усовершенствовать наши лучшие теории. Что является «экстраполяцией», а что нет, зависит от того, с какой