Читаем Структура реальности полностью

Нам известно, что ДНК живых организмов естественно подвержена случайным вариациям – мутациям в последовательности молекул А, Ц, Г и Т. Согласно теории эволюции адаптации в генах, а следовательно, и само существование генов, зависят от появления таких мутаций. Из-за мутаций популяции любого гена содержат некоторую степень вариаций, и особи – носители генов с более высокой степенью адаптации стремятся оставить больше потомков, чем другие особи. Большая часть вариаций гена делает его неспособным вызывать свою репликацию, потому что измененная последовательность уже не приказывает клетке производить что-то полезное. Остальные вариации просто делают репликацию менее вероятной (т.е. они сужают нишу гена). Однако некоторые могут реализовать новые команды, которые повысят вероятность репликации. Таким образом происходит естественный отбор. С каждым поколением вариации и репликации степень адаптации выживающих генов стремится к возрастанию. В настоящее время случайная мутация, вызванная, например, проникновением космического луча, станет причиной вариации не только внутри популяции организма в одной вселенной, но и между вселенными. Космический «луч» – это высокоэнергетическая дробноатомная частица, и, подобно фотону, испускаемому электрическим фонариком, она перемещается в различных направлениях в различных вселенных. Поэтому, когда частица космического луча проникает в цепочку ДНК и вызывает мутацию, некоторые из ее двойников в других вселенных не попадают в свои копии цепочки ДНК, а другие проникают в эти цепочки в других местах, вызывая, следовательно, другие мутации. Таким образом, проникновение одного космического луча в одну молекулу ДНК в общем случае вызовет в различных вселенных огромное количество различных мутаций.

Когда мы размышляем, как конкретный объект может выглядеть в других вселенных, нам не следует заглядывать в мультиверс так далеко, что распознать двойника этого объекта в другой вселенной станет невозможно. Возьмем, например, отрезок ДНК. В некоторых вселенных совсем нет молекул ДНК. Другие вселенные, содержащие ДНК, настолько не похожи на нашу, что не существует способа распознать, какой отрезок ДНК в этой вселенной соответствует тому отрезку, который мы рассматриваем в нашей вселенной. Бессмысленно задаваться вопросом, как наш конкретный отрезок ДНК выглядит в такой вселенной, поэтому, во избежание появления такой неопределенности, мы должны рассматривать только те вселенные, которые достаточно похожи на нашу. Например, мы могли бы рассматривать только те вселенные, в которых существуют медведи и в которых образец ДНК медведя был помещен в устройство для проведения анализа, запрограммированное на распечатку десяти букв, представляющих структуру в точно определенной позиции относительно конкретных ориентиров точно определенной цепочки ДНК. Последующее обсуждение не имело бы места, если бы нам пришлось выбирать любой другой разумный критерий распознавания соответствующих отрезков ДНК в близлежащих вселенных.

По любому такому критерию отрезок гена медведя почти во всех близлежащих вселенных должен иметь такую же последовательность, как и в нашей вселенной. Так происходит потому, что, по-видимому, этот ген обладает высокой степенью адаптации, а это значит, что большая часть его вариантов не сумеет скопироваться в большинстве вариантов окружающей среды, а потому, не сможет появиться именно на этом участке ДНК живого медведя. Наоборот, когда отрезок ДНК, не несущий знание, подвергается почти любой мутации, мутированный вариант, тем не менее, остается способным к копированию. За многие поколения репликации произойдет множество мутаций, и большинство из них не окажут никакого влияния на репликацию. Следовательно, отрезок дефективной последовательности, в отличие от своего генного двойника, будет абсолютно гетерогенным в различных вселенных. Также может случиться, что каждая возможная вариация его последовательности (т.е. того, что мы должны подразумевать под его последовательностью, которая совершенно случайна) будет в равной степени представлена в мультиверсе.

Таким образом, перспектива мультиверса открывает дополнительную физическую структуру ДНК медведя. В этой вселенной она содержит два отрезка с последовательностью ТЦГТЦГТТТЦ. Один из них является частью гена, другой не является. В большинстве других близлежащих вселенных первый из двух отрезков имеет ту же самую последовательность, ТЦГТЦГТТТЦ, как и в нашей вселенной, но второй отрезок сильно отличается в близлежащих вселенных. Таким образом, с перспективы мультиверса два отрезка даже отдаленно не похожи друг на друга (рисунок 8.1).

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука