Читаем Структура реальности полностью

Представьте включенный электрический фонарик в темной комнате где нет других источников освещения. Нить накала лампочки испускает свет, который расширяется, образуя часть конуса. Чтобы не усложнять эксперимент отраженным светом, стены комнаты должны быть матово-черными для полного поглощения света. Или, поскольку мы проводим эти эксперименты только в своем воображении, можно представить комнату астрономических размеров, чтобы до завершения эксперимента свет не успел достигнуть стен и вернуться. Рисунок 2.1 иллюстрирует данный опыт. Но этот рисунок в некоторой степени не соответствует истине: если бы мы смотрели на фонарик со стороны, мы не смогли бы увидеть ни фонарик, ни свет. Невидимость – одно из простейших свойств света. Мы видим свет лишь тогда, когда он попадает в наши глаза (хотя, как правило, мы говорим о последнем объекте, на который воздействовал этот свет и который оказался по линии нашего зрения). Мы не можем увидеть свет, который просто проходит мимо. Если бы в луче оказался отражающий объект или даже пыль или капельки воды, чтобы рассеять свет, мы смогли бы его увидеть. Но поскольку в луче ничего нет, и мы смотрим на него извне, его свет не достигает нас. Наиболее точно то, что мы должны увидеть, следовало бы представить абсолютно черной картинкой. В присутствии второго источника света, мы могли бы увидеть фонарик, но опять же не его свет. Лучи света, даже самого интенсивного света, который мы можем получить (с помощью лазеров), проходят друг через друга, как если бы ничего не было вообще.

На рисунке 2.1 видно, что около фонарика свет наиболее яркий, по мере удаления от него свет тускнеет, так как луч расширяется, чтобы осветить еще большую площадь. Наблюдателю, находящемуся в луче и отходящему от фонарика спиной вперед, рефлектор показался бы еще меньше, а когда был бы виден только как точка, еще слабее. Это в самом деле было бы так? Способен ли свет действительно распространяться неограниченно все более тонкими лучами? Ответ: нет. На расстоянии примерно десяти тысяч километров от фонарика его свет был бы слишком слабым, чтобы человеческий глаз мог его различить, и наблюдатель ничего бы не увидел. То есть человек ничего бы не увидел; а животное с более чувствительным зрением? Глаза лягушки в несколько раз чувствительнее человеческих глаз: этого вполне достаточно, чтобы почувствовать ощутимую разницу при проведении эксперимента. Если бы наблюдателем была лягушка, и она удалялась бы от электрического фонарика, момент, когда она полностью потеряла бы его из вида, никогда бы не наступил. Вместо этого лягушка увидела бы, что фонарик начал мерцать. Вспышки возникали бы через неравные промежутки времени, которые увеличивались бы по мере удаления лягушки от фонарика. Но отдельные вспышки не стали бы менее яркими. На расстоянии ста миллионов километров от фонарика лягушка видела бы в среднем только одну вспышку света в день, но эта вспышка была бы не менее яркой, чем любая другая, наблюдаемая с любого другого расстояния.

Рис. 2.2. Лягушки могут видеть отдельные фотоны

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука