Но какими правилами вывода нам следует пользоваться? Это все равно, что спросить, как следует запрограммировать генератор виртуальной реальности для передачи мира геометрии Евклида. Ответ в том, что нужно использовать те правила вывода, которые, для нашего лучшего понимания, заставят наши символы вести себя в уместной степени как абстрактные категории, которые они обозначают. Как мы можем быть уверены, что они будут вести себя именно так? А мы и не можем быть уверены в этом. Предположим, что некоторые критики возражают против наших правил вывода, потому что они считают, что наши символы будут вести себя отлично от абстрактных категорий. Мы не можем ни взывать к авторитету Аристотеля или Платона, ни доказать, что наши правила вывода безошибочны (за исключением теоремы Геделя, это привело бы к бесконечному регрессу, ибо сначала нам пришлось бы доказать обоснованность самого метода доказательства, используемого нами). Не можем мы и надменно сказать критикам, что у них что-то не в порядке с интуицией, потому что
На первый взгляд, характер традиционного символического доказательства кажется весьма отличным от характера «практического» виртуального доказательства. Но теперь мы видим, что они относятся друг к другу так же, как вычисления относятся к физическим экспериментам. Любой физический эксперимент можно рассматривать как вычисление, и любое вычисление – как физический эксперимент. В обоих видах доказательства физическими категориями (независимо от того, находятся они в виртуальной реальности или нет) манипулируют в соответствии с правилами. В обоих видах доказательства физические категории представляют интересующие нас абстрактные категории. И в обоих случаях надежность доказательства зависит от истинности теории о том, что физические и абстрактные категории действительно имеют соответствующие свойства.
Из вышеизложенного рассуждения также можно увидеть, что доказательство – это физический
Следовательно, ни математические теоремы, ни процесс математического доказательства, ни впечатление о математической интуиции не подтверждает никакую определенность. Ничто не подтверждает ее. Наше математическое знание, так же как и наше научное знание, может быть глубоким и широким, может быть неуловимым и удивительно объяснительным, может быть принятым без разногласий; но оно не может быть определенным. Никто не может гарантировать, что в доказательстве, которое ранее считалось обоснованным, однажды не обнаружат глубокое недоразумение, казавшееся естественным из-за ранее несомненного «самоочевидного» допущения о физическом мире, или об абстрактном мире, или об отношении некоторых физических и абстрактных категорий.