Читаем Структура реальности полностью

Это говорит о том, что нам снова следует воспользоваться критерием доктора Джонсона. Если мы хотим знать, действительно ли существует данная абстракция, мы должны спросить, «дает ли она ответную реакцию» сложным, автономным образом. Например, математики характеризуют «натуральные числа» 1, 2, 3,... – прежде всего – точным определением:

1 – это натуральное число.

За каждым натуральным числом следует только одно число, которое также является натуральным.

1 не следует ни за каким натуральным числом.

Подобные определения – это попытки абстрактного выражения интуитивного физического понятия последовательных значений дискретной величины. (Точнее, как я объяснил в предыдущей главе, в действительности это понятие является квантово-механическим). Арифметические действия, например, умножение и сложение, а также последующие понятия, подобные понятию простого числа, в этом случае определяют, ссылаясь на «натуральные числа». Но создав абстрактные «натуральные числа» через это определение и поняв их через эту интуицию, мы обнаруживаем, что осталось гораздо больше того, что мы все еще не понимаем о них. Определение простого числа раз и навсегда устанавливает, какие числа являются простыми, а какие не являются. Но понимание того, какие числа являются простыми, – например, продолжается ли последовательность простых чисел бесконечно, как они сгруппированы, насколько и почему они «случайны», – влечет за собой новое понимание и изобилие новых объяснений. В действительности оказывается, что сама теория чисел – это целый мир (этот термин используют часто). Для более полного понимания чисел мы должны определить множество новых классов абстрактных категорий и постулировать много новых структур и связей между этими структурами. Мы обнаруживаем, что некоторые подобные структуры связаны с интуицией другого рода, которой мы уже обладаем, но которая вопреки этому не имеет ничего общего с числами – например, симметрия, вращение, континуум, множества, бесконечность и многое другое. Таким образом, абстрактные математические категории, с которыми, как нам кажется, мы знакомы, тем не менее, могут удивить или разочаровать нас. Они могут неожиданно возникнуть в новых нарядах или масках. Они могут быть необъяснимы, а впоследствии подойти под новое объяснение. Таким образом, они являются сложными и автономными, и, следовательно, по критерию доктора Джонсона, мы должны сделать вывод об их реальности. Поскольку мы не можем понять их ни как часть себя, ни как часть чего-либо еще, что мы уже понимаем, но можем понять их как независимые категории, следует сделать вывод, что они являются реальными, независимыми категориями.

Тем не менее, абстрактные категории неосязаемы. Они не дают ответной физической реакции так, как это делает камень, поэтому эксперимент и наблюдение не могут играть в математике такую же роль, какую они играют в науке. В математике такую роль играет доказательство. Камень доктора Джонсона оказал ответное воздействие тем, что в его ноге появилась отдача. Простые числа оказывают ответное воздействие, когда мы доказываем что-то неожиданное относительно них, особенно, если мы можем пойти дальше и объяснить это. С традиционной точки зрения ключевое различие между доказательством и экспериментом состоит в том, что доказательство не ссылается на физический мир. Мы можем осуществить доказательство в своем собственном разуме или внутри генератора виртуальной реальности, который передает среду с неправильной физикой. Единственное условие заключается в том, что мы следуем правилам математического вывода, а потому должны получить тот же самый ответ, что и кто-либо еще. II вновь широко распространено мнение, что, не считая возможности появления грубых ошибок, когда мы доказали что-либо, мы абсолютно определенно знаем, что это истина.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука