Один фотон входит в интерферометр сверху слева, как показано на рисунке 9.3. Во всех вселенных, где проводят эксперимент, фотон и его двойники движутся к интерферометру по одной и той же траектории. Следовательно, эти вселенные идентичны. Но как только фотон ударяется о полупрозрачное зеркало, первоначально идентичные вселенные становятся различными. В половине из них фотон проходит через это зеркало и перемещается вдоль верхней стороны интерферометра. В остальных вселенных фотон отскакивает от зеркала и перемещается вдоль левой стороны интерферометра. Затем разновидности фотона в этих группах вселенных ударяются об обычные зеркала справа сверху и слева снизу соответственно и отскакивают от них. Таким образом, в конце они одновременно попадают на полупрозрачное зеркало справа снизу и интерферируют друг с другом. Не забывайте, что мы пускали в аппарат только один фотон, и в каждой вселенной по-прежнему находится только один фотон. Во всех вселенных этот фотон теперь ударился о правое нижнее зеркало. В половине вселенных он ударился об это зеркало слева, в другой половине – сверху. Между разновидностями фотона из этих двух групп вселенных произошла сильная интерференция. Суммарный эффект зависит от точной геометрии ситуации, но на рисунке 9.3 изображен тот случай, когда во всех вселенных фотон в конце движется вправо сквозь зеркало, и ни в одной вселенной он не передается или не отражается вниз. Таким образом, в конце эксперимента все вселенные так же идентичны, как и в начале. Они отличались и взаимодействовали друг с другом всего лишь долю минуты в промежуточном состоянии.
Это замечательное явление неслучайной интерференции – почти такое же неизбежное свидетельство существования мультиверса, как Я явление теней. Поскольку результат, описанный мной, несовместим
Поскольку в этом опыте присутствуют только два различных вида вселенных, вычисление того, что произойдет, займет только всего в два раза больше времени, чем заняло бы, если бы частица подчинялась классическим законам – скажем, если бы мы вычисляли траекторию движения бильярдного шара. Вряд ли коэффициент два сделает такие вычисления трудно обрабатываемыми. Однако, мы уже видели, что довольно легко достичь и гораздо более высокой степени многообразия. В экспериментах с тенями один фотон проходит через перегородку с несколькими маленькими отверстиями и попадает на экран. Предположим, что в перегородке тысяча отверстий. На экране есть места, куда может попасть фотон (и