Парадигма как общепризнанный образец составляет центральный элемент того, что я теперь считаю самым новым и в наименьшей степени понятым аспектом данной книги. Поэтому именно образцы требуют здесь большего внимания, чем другие компоненты дисциплинарной матрицы. Философы науки обычно не обсуждали проблемы, с которыми сталкивается студент в лабораториях или при усвоении учебного материала, всё это считалось лишь практической работой в процессе применения того, что студент уже знает. Он не может, говорили философы науки, решить никакой проблемы вообще, не изучив перед этим теорию и некоторые правила её приложения. Научное знание воплощается в теории и правилах; проблемы ставятся таким образом, чтобы обеспечить лёгкость в применении этих правил. Я попытался доказать тем не менее, что такое ограничение познавательного содержания науки ошибочно. После того как студент уже решил множество задач, в дальнейшем он может лишь усовершенствоваться в своём навыке. Но с самого начала и ещё некоторое время спустя решение задач представляет собой способ изучения закономерности явлений природы. В отсутствие таких образцов законы и теории, которые он предварительно выучил, имели бы бедное эмпирическое содержание.
Чтобы показать, что я имею в виду, я позволю себе кратко вернуться к символическим обобщениям. Одним из широко признанных примеров является второй закон Ньютона, обычно выражаемый формулой f = ma. Социолог или, скажем, лингвист, которые обнаружат, что соответствующее выражение сформулировано в аподиктической форме и принято всеми членами данного научного сообщества, не поймут без многих дополнительных исследований большую часть того, что означают выражения или термины в этой формуле, и то, как учёные сообщества соотносят это выражение с природой. В самом деле, тот факт, что они принимают его без возражений и используют его как средство, посредством которого вводятся логические и математические операции, ещё отнюдь не означает сам по себе, что они соглашаются по таким вопросам, как значение и применение этих понятий. Конечно, они согласны по большей части этих вопросов; если бы это было не так, это сразу бы сказалось на процессе научного общения. Но спрашивается, с какими целями и применением каких средств они достигли этого согласия. Каким образом научились они, столкнувшись с данной экспериментальной ситуацией, подбирать соответствующие силы, массы и ускорения?
Хотя на этот аспект ситуации редко обращают внимание или вообще не обращают, практически студенты должны изучить даже нечто ещё более сложное. Дело вовсе не в том, что логические и математические операции применимы прямо и непосредственно к выражению f = ma. Это выражение при ближайшем рассмотрении оказывается как бы законом-схемой. По мере того как студент или учёный-исследователь переходят от одной проблемной ситуации к другой, символическое обобщение, к которому применяются такие операции, меняет свою прежнюю форму. Для случая свободного падения f = ma приобретает вид: mg = m d2s/dt2. Для простого маятника оно преобразовывается в формулу: mg sin θ = ―ml d2θ/dt2. Для пары взаимодействующих гармонических осцилляторов записываются два уравнения; первое из них имеет вид:
m1d2s1/dt2 + k1s1 = k1 (s2 ― s1 + d).
A для более сложных ситуаций, таких, как гироскоп, оно принимает и другие формы, производный характер которых по отношению к равенству f = ma раскрыть бывает ещё труднее. Однако, научившись идентифицировать силы, массы и ускорения в разнообразных физических ситуациях, не встречавшихся прежде, студент учится также строить определённый вариант формулы f = ma, посредством которой различные ситуации соотносятся между собой; часто вариант, с которым он сталкивается, не имел ранее никакого точного эквивалента. Каким же образом в таком случае студент учится такому применению?