Описывая Вселенную в целом или описывая систему, в которой гравитационные эффекты очень сильны, мы должны использовать обобщённое понятие энергии, согласующееся с искривлённым пространством-временем. Однако если мы рассматриваем процессы, происходящие на масштабах, которые малы по сравнению с размером видимой части Вселенной или вдали от сильных гравитационных полей, то локальная кривизна пространства-времени оказывается небольшой. В этом случае мы можем использовать традиционное определение энергии. Это, в свою очередь, демонстрирует мощь закона сохранения энергии в космических масштабах, закона, который определяет судьбу Вселенной.
Как сказал Исаак Ньютон, «всё, что поднимается, должно падать». Не желая оскорбить мэтра, всё же следует заметить, что это неверно. Мы знаем из опыта, что космическому аппарату можно придать такую скорость, что он никогда не упадёт обратно на Землю. Существует определённая, одинаковая для любого тела скорость, необходимая для того, чтобы тело навсегда улетело от Земли. Если бы это было не так, американская лунная программа оказалась бы гораздо более сложной, поскольку в конструкции космического корабля пришлось бы явным образом учитывать вес каждого астронавта. За существование такой универсальной
Мы можем разбить энергию любого тела, движущегося в гравитационном поле Земли, на две части. Первая часть зависит от скорости тела. Чем быстрее оно летит, тем больше энергия его движения, называемая
Чаще всего потенциальная энергия двух взаимодействующих тел представляется отрицательным числом. Это просто соглашение, но за ним стоят практические соображения. Логично считать, что покоящееся тело, находящееся на бесконечном удалении от Земли или любого другого массивного тела, обладает нулевой полной энергией. Так как кинетическая энергия покоящегося тела равна нулю, его потенциальная энергия также должна быть нулевой. Но поскольку при приближении к притягивающему объекту потенциальная энергия тела уменьшается, то она должна становиться всё более и более отрицательной, по мере того как расстояние между телом и притягивающим объектом уменьшается.
Если мы будем придерживаться этого соглашения, то две части полной энергии любого тела, движущегося в гравитационном поле, например вблизи поверхности Земли, будут иметь противоположные знаки: одна будет положительной, другая отрицательной. Мы можем затем задаться вопросом, является ли их сумма положительной или отрицательной. Это важнейший вопрос. Если энергия сохраняется, то тело, полная энергия которого отрицательна, никогда не сможет покинуть околоземное пространство. Смотрите: если тело улетает «на бесконечность» и там замедляется до полной остановки, это означает, что его полная энергия равна нулю. Ноль больше любого отрицательного числа, и это значит, что если полная энергия тела отрицательна, то на конечном расстоянии от Земли оно остановится и начнёт падать обратно. Если полная энергия тела изначально отрицательна, то она не может стать ни нулевой, ни положительной — так требует закон сохранения энергии. Скорость, при которой первоначальная (положительная) кинетическая энергия в точности равна (отрицательной) потенциальной энергии, так чтобы полная энергия была равна нулю, это и есть