Такой «скачок» в физике элементарных частиц начался в конце 1950-х и закончился в начале 1970-х годов. Постепенно стало ясно, что квантовая электродинамика, добиться завершения которой удалось после совещания на Шелтер-Айленде, могла бы быть взята за образец для построения ещё более общей квантовой теории, описывающей все известные фундаментальные взаимодействия. Как я уже писал ранее, математический аппарат квантовой электродинамики и теории слабого взаимодействия, отвечающего за большинство ядерных реакций, очень похож. Единственное отличие заключается в том, что переносчики слабого взаимодействия являются массивными частицами, а переносчики электромагнитного взаимодействия — безмассовыми. И в 1961 году Глэшоу продемонстрировал, что эти две разные силы действительно могут быть соединены в одной теории, в которой электромагнитное и слабое взаимодействия оказываются разными проявлениями одной и той же сущности. Но оставался нерешённым вопрос, почему фотон не имеет массы, а переносчики слабого взаимодействия — W- и Z-бозоны — имеют.
Однако после того, как было признано, что само пространство способно действовать как огромный «сверхпроводник», в том смысле, что фоновое поле виртуальных частиц может приводить к возникновению эффективных масс у движущихся сквозь него реальных частиц, Стивен Вайнберг и независимо от него Абдус Салам в 1967 году доказали, что именно это и происходит с W- и Z-бозонами.
Интересно здесь не само открытие механизма возникновения масс у W- и Z-бозонов, а то, что в отсутствие такого механизма электромагнитное и слабое взаимодействия оказываются лишь различными проявлениями одного и того же физического явления. Ещё раз: наблюдаемое различие между этими двумя взаимодействиями в значительной степени — результат стечения обстоятельств. Если бы мы не жили в пространстве, заполненном когерентным ансамблем виртуальных частиц в определённом квантовом состоянии, электромагнитное и слабое взаимодействия выглядели бы для нас одинаково. Они представляются нам в виде различных теней на стене пещеры, скрывая свою истинную природу за пределами прямых свидетельств наших органов чувств.
В 1971 году голландский физик Герард ’т Хоофт, ещё будучи аспирантом, показал, что механизм возникновения масс W- и Z-бозонов является математически и физически согласованным. В 1979 году Глэшоу, Салам и Вайнберг удостоились за свою теорию Нобелевской премии, а 1984 году W- и Z-бозоны были обнаружены экспериментально на большом ускорителе в ЦЕРНе, и их массы очень хорошо совпали с предсказанными. Наконец, в 1999 году получил Нобелевскую премию и сам 'т Хоофт, который вместе со своим научным руководителем Мартинусом Вельтманом показал, что теория Глэшоу — Вайнберга — Салама самосогласованна.
Но этим результатом дело не ограничилось. Успех объединения слабого и электромагнитного взаимодействий в единую силу, получившую название
Ещё в 1918 году физик и математик Герман Вейль, обратив внимание на сходство уравнений гравитационного и электромагнитного поля, предположил, что гравитация и электромагнетизм могут быть сведены в единую теорию. Он назвал объединяющую их особенность
Математически то же самое происходит и при измерении различными наблюдателями величины электрического заряда в электродинамике. Вейль попытался связать таким способом классическую электродинамику и гравитацию, но не преуспел в этом. Однако созданный им математический аппарат оказался востребован при создании квантовой электродинамики, и калибровочная симметрия легла в основу теорий слабых и сильных взаимодействий. Сегодня калибровочная симметрия является ключевой идеей большинства попыток создания квантовой теории гравитации и объединения её с другими взаимодействиями.