Сверхпроводимость оставалась загадкой почти полвека, пока в 1957 году три физика — Джон Бардин, Аеон Купер и Джон Роберт Шриффер не создали его полное микроскопическое теоретическое объяснение. Бардин к тому времени уже получил одну Нобелевскую премию за участие в изобретении транзистора — ключевого компонента всей современной электроники. Нобелевская премия, которую он разделил в 1972 году с Купером и Шриффером, была уже второй. Помню, я как-то прочитал в одном из писем в физический журнал, что по иронии судьбы, когда Бардин, единственный человек, получивший две Нобелевские премии в одной и той же области, умер в 1992 году, об этом даже не сообщили по телевидению, в то время как было бы очень полезно миллионам телезрителей узнать о человеке, благодаря открытиям которого они имеют возможность смотреть свой телевизор.
Ключевая идея, приведшая к созданию теории сверхпроводимости, была сформулирована в 1930 году Фрицем Лондоном. Он предположил, что подобное странное поведение вещества может быть результатом квантово-механического эффекта, который обычно проявляется только на атомных масштабах, внезапно проявившегося на макроуровне. Согласно его теории, электроны, ответственные за протекание электрического тока в проводнике, которые в обычных условиях ведут себя подобно неорганизованной толпе, под воздействием какого-то квантово-механического механизма вдруг начинают вести себя, как организованная армия, действуя
Подобное явление может иметь место только благодаря важному квантово-механическому свойству: энергия, которая может быть передана или отобрана у системы конечного размера, квантована, то есть она может передаваться только дискретными порциями. Набор возможных энергетических состояний любой частицы в системе также дискретен. Что происходит, когда у вас есть целая куча частиц в куске вещества? Если внутри этого куска имеется много свободных энергетических состояний, то частицы могут распределяться по этим состояниям весьма произвольным образом. Однако при понижении температуры число возможных состояний уменьшается, и наступает такой момент, когда все находящиеся в куске вещества частицы вынуждены находиться в одном и том же состоянии, потому что других возможных состояний просто не осталось.
Чтобы понять, как это может произойти, рассмотрим следующую житейскую аналогию: вы смотрите кинокомедию в переполненном кинотеатре и находите её очень смешной. Затем вы покупаете DVD с этим фильмом, чтобы ещё раз посмотреть комедию дома, но она уже не кажется вам такой смешной, какой была в кинотеатре. В чём причина? Смех заразителен. Когда кто-то рядом с вами начинает оглушительно хохотать, трудно удержаться и не засмеяться вместе с ним. И чем больше людей смеются вокруг вас, тем труднее сдержать собственный смех.
Физически же в куске вещества происходит примерно следующее: в определённой конфигурации две частицы могут образовать устойчивую пару, так что их суммарная энергия будет меньше, чем сумма энергий двух свободных частиц. Если же энергия ансамбля из трёх частиц оказывается меньше, чем сумма энергий уже образовавшейся пары и свободной частицы, то к ним может присоединиться и третья частица и так далее. Подобное объединение становится возможным, только если все частицы находятся в одном и том же, самом низкоэнергетическом из всех возможных состояний. Вы, возможно, уже догадались, что произойдёт дальше: довольно скоро все частицы окажутся в одном и том же квантовом состоянии, объединившись в своеобразный
А дальше происходит следующее. Поскольку каждое квантовое состояние системы характеризуется собственным дискретным значением энергии, то после того, как все частицы окажутся в одном и том же квантовом состоянии, энергия этого состояния при определённых обстоятельствах может оказаться гораздо меньшей, чем энергия состояния, в котором все частицы объединены, а одна свободна. Этот энергетический разрыв, или, как его называют,