Читаем Стол находок утерянных чисел полностью

Девочка решила задачу сама. Прежде всего она подобрала наименьшее число из тех, что одновременно делятся на 9 и на 2. Это 18. Ясно, что число жаворонков 18/9 =2; число канареек 18/2=9. А скворцов — 7.

После этого восемнадцать птах взлетели в небо, а я заявил, что теперь моя очередь получать удовольствие, и как человек скромный попросил немногого: всего лишь позволения поговорить о дробях. Сперва об обыкновенных. Правда, девочка сказала, что с дробями уже знакома. Но я пожелал это проверить и для начала спросил, чем отличается обыкновенная дробь от целого числа.

— Тем же, чем целый арбуз от ломтика, — остроумно ответила девочка. — Чем больше народу за столом, тем меньший ломтик достанется каждому. Если, конечно, делить по-честному.

— Зато чем меньше будет каждый ломтик, тем больше будет их самих, — добавил я. — Вот и выходит, что, когда при дроблении число частей увеличивается, сами части уменьшаются.

— Прошу прощения, — вмешался Главный терятель, — насколько я понимаю, до сих пор речь шла о людях порядочных, которые привыкли всё делить поровну. А если среди них окажется нахал?

— Тогда дело обернётся немного иначе, — вздохнул я. — Допустим, у двух приятелей есть арбуз на двоих. Но один захотел получить вдвое больше другого. Как быть?

Девочка сообразила, что в этом случае арбуз следует разделить на три части. Две трети достанутся нахалу, а одна треть порядочному человеку. Но… но ведь так никогда не бывает! Зачем же задавать такие гадкие задачи?

— Виноват, — сказал я. — Больше не буду. И вообще, поговорим о чём-нибудь другом. О десятичных дробях, например. Как ты думаешь, чем они отличаются от обыкновенных?

— По-моему, их записывать легче, — рассудила девочка. — И вычислять удобнее. Да и сравнивать тоже. Вот, к примеру, что больше: 3/8 или 19/43? Тут голову сломаешь, пока дознаешься. Другое дело 0,135 и 0,158. Сразу видно, что почём…

— Это потому, что у десятичных дробей знаменатели кратны десяти, — пояснил я. — И всё-таки не все десятичные дроби поддаются вычислению. Иные из них никаким конечным числом не запишешь.

— Ну да? — не поверила девочка. — Что ж это за дроби такие?

— Эти дроби называются иррациональными. Точным числом их не выразишь. К примеру, √2. Целая часть его равна единице, а дробная состоит из бесконечного ряда цифр. Сколько её ни вычисляй, конца ей нет и не будет. Само собой, пользоваться такой дробью невозможно, да и не нужно. И потому для удобства ограничиваются её приближённым значением. Корень квадратный из двух обычно записывают так: ставят знак приближения — две волнистые чёрточки — и рядом 1,41 (≈1,41). А корень квадратный из трёх приближённо равен 1,73 (≈1,73).

— Словом, иррациональными числами называются корни, которые нельзя вычислить точно, — подытожила девочка.

— Не только корни, — возразил я. — Среди иррациональных есть и другие числа. Вот, например…

Но тут мы подошли к летнему цирку, и мне уже стало не до примеров. Цирк этот не зря помещается на территории зоопарка. В нём часто выступают местные звери. Его полотняный шатёр раскинут на круглой площади, от которой лучами расходятся аллеи с клетками. Но если нам удалось побродить по этим аллеям, так только потому, что цирковое представление должно было начаться через полчаса. Кабы не это, девочка непременно выбрала бы из двух удовольствий большее и в тот день мы бы уже не увидали знаменитой коллекции энэмского зоопарка, где собраны животные изо всех басен и сказок мира.

Это была бы немалая потеря, но нас она миновала. Нам таки удалось пообщаться с некоторыми героями Крылова и Киплинга и даже получить от них на память кое какие советы.

— Никогда не пойте во время еды! — сказала знаменитая крыловская Ворона. — Это не принято в хорошем обществе.

— Приглашая гостей, позаботьтесь об угощении! — сказала Лиса, доедая с плошки манную кашу, которой угощала Журавля.

— И не забудьте о сервировке, — грустно добавил голодный Журавль.

— Собираясь путешествовать вместе, не берите билетов на разные виды транспорта, — посоветовали Лебедь, Рак и Щука.

— Охотясь на очковую змею, не забудьте сбить с неё очки, — напомнил Рикки-Тикки-Тави.

— И всегда носите их в футляре, — добавила Мартышка, — ведь больше они ни на что не годятся!

— Не заглядывайте в пасть крокодилу, — остерёг нас любопытный Слонёнок. — Как бы он не оставил вас с носом! И предлинным.

— Никогда не опаздывайте! — сказала Кошка, которая ходит сама по себе. — Вы рискуете прийти к шапочному разбору.

Это был своевременный совет, и мы поспешили в цирк.

<p>В ЦИРКЕ</p>

Что может быть лучше летнего цирка? Только зимний! Цирк любят все. Старики вспоминают здесь свою молодость. Молодые превращаются в детей. А дети, которых досрочно пытаются превратить во взрослых, забывают обо всём на свете и развлекаются, как им и положено.

Перейти на страницу:

Похожие книги

115 сочинений с подготовительными материалами для младших школьников
115 сочинений с подготовительными материалами для младших школьников

Дорогие друзья!Сочинение – это один из видов работы по развитию речи, который предполагает самостоятельное, продуманное изложение вами своих мыслей в соответствии с требуемой темой.Работа над сочинением развивает мышление, речь, позволяет выразить свой взгляд на мир. Такой вид работы способствует осознанию окружающего мира, действительности, самих себя. Кроме того, сочинение учит аргументированно доказывать и отстаивать свою точку зрения.В данном пособии вы найдёте методику написания сочинений, а также различные виды сочинений с планами и подготовительными материалами.Не забывайте, что сочинение – это прежде всего творческая работа, которая не терпит шаблона. Советуем вам не использовать представленные в пособии сочинения для бездумного, механического переписывания их в свои тетради. Наши сочинения – это возможные варианты раскрытия определённых тем, которые, надеемся, помогут вам при создании самостоятельных текстов.Желаем успехов!

Ольга Дмитриевна Ушакова

Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Книги Для Детей