Секунду спустя, через 1,1 секунды после начала, Вселенная уже заметно остыла, до десяти миллиардов градусов. Плотность Вселенной в это время была всего в 380 000 раз больше плотности воды, а после этого реакции между частицами были очень похожи на ядерные реакции, идущие сегодня в недрах Солнца и других звезд.
При температуре в три миллиарда градусов, менее чем через 14 секунд после начала, смогли, пусть и ненадолго, сформироваться первые ядра дейтерия. Водород – самый простой атом, с единственным протоном в ядре и одним электроном на орбите вокруг ядра (в каком-то смысле одиночные протоны можно считать ядрами водорода). Следующий по сложности атом – дейтерий, ядро которого состоит из одного протона и одного нейтрона, а вокруг них по орбите вращается один электрон. Атомы, у которых одинаковое количество электронов, но разное количество нейтронов, обладают одинаковыми химическими свойствами и называются изотопами; дейтерий – изотоп водорода, который иногда называют «тяжелый водород».
Температура – мера средней скорости частиц, из которых состоит вещество (именно поэтому не может быть температуры ниже –273 °C, когда прекращается движение атомов), а при температурах выше трех миллиардов градусов протоны и нейтроны носятся так быстро, что способны лишь отскакивать друг от друга. Одни частицы движутся быстрее среднего, другие медленнее, хотя скорости большинства близки к средней. Поэтому, когда температура падает ниже этой величины, некоторые протоны и нейтроны движутся уже довольно медленно и при столкновении соединяются. Соединяет их притяжение, известное как сильное взаимодействие. Как ясно из названия, это мощная сила притяжения, возникающая между протонами и нейтронами. Однако действует она только на очень малых расстояниях, и быстрые частицы проскакивают мимо друг друга или отскакивают быстрее, чем сильное взаимодействие успевает их связать. Поначалу большинство ядер дейтерия, возникших таким образом, разрушались при столкновениях с более быстрыми частицами, но огненный шар понемногу остывал, и шансы на выживание у ядер дейтерия постоянно повышались.
Всего через 3 минуты и 2 секунды после начала температура упала ниже миллиарда градусов, и Вселенная была всего в семьдесят раз горячее, чем недра Солнца в наши дни. Теперь почти все ядра дейтерия могли соединяться попарно, и получались ядра гелия. Каждое ядро гелия содержит два протона и два нейтрона, всего четыре «нуклона», поэтому они называются ядрами гелия-4 (у атома гелия, разумеется, есть еще два электрона, вращающиеся вокруг ядра).
Так уж вышло, что ядра гелия-4 особенно стабильны. Однако в природе не существует стабильных ядер с пятью нуклонами (а казалось бы, что стоит добавить протон или нейтрон к ядру гелия-4) и с восемью нуклонами (если слепить вместе два ядра гелия-4). Поэтому процесс нуклеосинтеза после Большого Взрыва остановился на выработке гелия-4. Меньше чем через 4 минуты после начала вещество Вселенной пришло в равновесие на уровне около 75 % ядер водорода и 25 % гелия вперемешку с быстрыми электронами в океане горячего излучения.
Через полчаса – спустя 34 минуты после начала – температура снизилась до 300 миллионов градусов, и плотность Вселенной составляла всего 10 % плотности воды. Однако Вселенной пришлось остывать еще 700 000 лет, чтобы к ядрам присоединились электроны и возникли стабильные атомы. До этого, даже если положительно заряженное ядро пыталось захватить отрицательно заряженный электрон, этот электрон вышибал какой-нибудь энергичный фотон. Но после 700 000 лет температура Вселенной упала до 4000 градусов (примерно такова сегодня температура поверхности Солнца), и ядра наконец смогли удерживать электроны и формировать стабильные атомы. На протяжении большей части последних 15 миллиардов лет протоны, нейтроны и электроны соединяются в звезды и галактики, которые возникают из этого первичного материала, когда гравитация стягивает в пространстве облака газа. Излучение, оставшееся после Большого Взрыва, не имеет к этому никакого отношения, поскольку уже давно остыло настолько, что не может отделять электроны от атомных ядер и теперь просто остывает дальше по мере расширения Вселенной. Однако, как мы еще увидим, это реликтовое излучение, отголосок сотворения мира, сыграло важнейшую роль в том, чтобы убедить космологов, что одна из их «моделей» и в самом деле показывает, как обстоят дела в реальной Вселенной. А на фоне всего этого тот, кому предстояло в 1970-е годы продвинуть космологию на шаг вперед, к самым истокам, переживал свои взлеты – и в личной, и в профессиональной жизни.
Глава 6
Семья и работа