Первое нововведение касалось допустимых математических приближений. Галилео Галилей привел убедительные доводы в пользу того, что книга о природе написана на языке математических уравнений, но он не упомянул, что эти уравнения мы далеко не всегда способны решить. Теория всемирного тяготения Ньютона превосходно объясняет вращение планет по орбитам, но его уравнения мы можем решить только в очень упрощенном и весьма далеком от реальности случае, когда условная солнечная система содержит всего лишь одну планету. В знаменитой квантовой механике все химические свойства атомов вытекают из одного-единственного уравнения, но имеется только один элемент, чье поведение
В физике мы довольствуемся математическими манипуляциями, которые, по нашему мнению, «должны работать», а математики имеют неприятную привычку требовать доказательства. Поэтому они иногда обвиняют физиков, что те небрежно обращаются с их святая святых, с математикой, что правда – так оно и есть. В попытках раскрыть истину, таящуюся под покровом уравнений, мы нарушаем математические законы, уклоняемся от математических стражей порядка и игнорируем постановления математического суда. Мы отсекаем целые куски уравнений, чтобы их усмирить, затем допрашиваем их и допускаем, что полученные от них признания достаточно близки к истине, которую мы восстанавливаем по кусочкам. Во всех исследованиях по теоретической физике, кроме самых простых, мы занимаемся преобразованиями, допущениями и приближениями, а затем приводим аргументы в пользу того, почему наша упрощенная модель и сделанные из нее выводы, несмотря на все это, обоснованны. Иногда это так, иногда нет. Доказательство своей правоты – непременное условие общения (иногда достаточно бурного) профессиональных физиков между собой. Часто такой спор нарушает все рамки шаблонных представлений о том, чем должны заниматься ученые. Несмотря на это, наши самолеты летают, наши лазеры излучают свет, а наши компьютеры вычисляют – и все это доказывает, что по большей части наша «халтура» в конце концов срабатывает.
Разным теоретикам свойственны различные степени толерантности в споре о том, какие слабые места или недоработки допустимы, а какие нет, чтобы не повлечь за собой сомнительные математические подтасовки. Одни в этом отношении более суровы, другие менее. Первые публикуют свои статьи только тогда, когда найдут веское доказательство в пользу своих доводов; вторые подходят к делу более безответственно. В начале своей научной карьеры Стивен был поборником более строгого научного подхода. Позднее в нем произошли изменения. Полагая, что конец близок – имея в виду свой собственный конец, – он сделал себе поблажку и, начиная с семидесятых годов, принялся допускать вольности. На то, чтобы ставить точки над
Еще одно нововведение, которое сделал Стивен в своей работе, – ввел геометрическое описание уравнений, стал мыслить образами. Очень часто физические законы можно представить геометрически. Это не обязательно, но вполне допустимо. Связь между подходами, в одном из которых большее предпочтение отдается геометрии, а в другом меньшее, в каком-то смысле подобна изучению геометрии и алгебры в средней школе. На уроках геометрии вы имеете дело с линиями, углами, окружностями, треугольниками и другими фигурами; вам объясняют правила, как следует орудовать с ними. На уроках алгебры вы часто оперируете с теми же понятиями, но в виде уравнений – например, пишете уравнения линии, окружности, синусоиды и косинусоиды. Теорему можно доказать либо алгебраически, либо геометрически. Это справедливо и в физике. Особенно в теории относительности, основные положения которой, как показал Минковский, очень хорошо могут быть выражены в наглядной геометрической манере.