Читаем Статистика и котики полностью

1. Данные представлены в метрической шкале. Иными словами, признаки должны быть представлены в определенных единицах измерения (см, кг, сек. и т. д.)

2. Большое число наблюдений (от 30, но лучше более 100).

3. Распределение значений признаков приблизительно соответствует нормальному.

4. Отсутствуют выбросы (значения, на порядок отличающиеся от среднего).

Непараметрические меры различий работают и без этих допущений. Наиболее часто используемые меры различий представлены в таблице.

Пример: предположим, что вы выращиваете помидоры, и вам необходимо определить, какой из двух сортов демонстрирует лучшую урожайность. Чтобы это сделать, вам необходимо подсчитать количество помидоров при каждом кусте и занести эту информацию в таблицу. Дальше вы применяете к этим данным t-критерий Стьюдента и по нему судите о наличии различий между сортами. Если сортов больше двух, то ваш выбор — дисперсионный анализ с последующим сравнением с помощью специальных post-hoc-критериев.

МЕРЫ РАЗЛИЧИЙ ДЛЯ СВЯЗАННЫХ ВЫБОРОК

Позволяют определить различия между двумя связанными выборками. Также делятся на параметрические и непараметрические:

Пример: Представим, что вы преподаватель курсов повышения квалификации, и вам интересно узнать, вынесли ли ваши слушатели что-нибудь полезное с занятий. Чтобы это сделать, вам необходимо разработать некоторый проверочный тест и раздать его слушателям до начала занятий и после их окончания. T-критерий Вилкоксона позволит вам проверить, стали ли слушатели лучше знать ваш предмет. Если же вы провели несколько таких измерений, то ваш вариант — это критерий Фридмана.

МЕРЫ СВЯЗИ

Данный класс критериев (называемых также коэффициентами корреляции) позволяет найти взаимосвязь между переменными. Математически взаимосвязь — это совместное изменение переменных.

Если она положительна и равна 1, то увеличение значения первой переменной сопровождается увеличением значения второй. Если она отрицательна (-1), то высокое значение первой переменной сопровождается низким значением второй. Коэффициент корреляции, равный 0, обозначает отсутствие взаимосвязи.

Самыми популярными коэффициентами корреляции являются r Пирсона (параметрический) и p Спирмена (непараметрический).

Пример: вы решили провести психологическое исследование и выяснить, существует ли взаимосвязь между интеллектом и уровнем дохода. Для этого вам необходимо найти группу испытуемых, измерить их интеллект, узнать их среднемесячный доход и найти коэффициент корреляции. Если он высок и положителен, то более интеллектуальные люди получают больше денег.

Если вы получили подобный результат, необходимо быть очень внимательными при его интерпретации. Поскольку равновероятными могут быть следующие варианты.

Более умные люди получают работу с более высоким заработком.

Высокий доход позволяет больше времени уделять саморазвитию в целом и развитию интеллекта в частности.

Существует неизвестная переменная (фактор), обусловливающая эту взаимосвязь.

Взаимосвязь является случайным совпадением.

РЕГРЕССИОННЫЙ АНАЛИЗ

Данная группа методов позволяет построить функциональную математическую модель — уравнение, которое помогает предсказать значение некоторой целевой переменной, используя значения ряда переменных, называемых предикторами.

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии
Управление проектами. Фундаментальный курс
Управление проектами. Фундаментальный курс

В книге подробно и систематически излагаются фундаментальные положения, основные методы и инструменты управления проектами. Рассматриваются вопросы управления программами и портфелями проектов, создания систем управления проектами в компании. Подробно представлены функциональные области управления проектами – управление содержанием, сроками, качеством, стоимостью, рисками, коммуникациями, человеческими ресурсами, конфликтами, знаниями проекта. Материалы книги опираются на требования международных стандартов в сфере управления проектами.Для студентов бакалавриата и магистратуры, слушателей программ системы дополнительного образования, изучающих управление проектами, аспирантов, исследователей, а также специалистов-практиков, вовлеченных в процессы управления проектами, программами и портфелями проектов в организациях.

Коллектив авторов

Экономика