1. Данные представлены в метрической шкале. Иными словами, признаки должны быть представлены в определенных единицах измерения (см, кг, сек. и т. д.)
2. Большое число наблюдений (от 30, но лучше более 100).
3. Распределение значений признаков приблизительно соответствует нормальному.
4. Отсутствуют выбросы (значения, на порядок отличающиеся от среднего).
Непараметрические меры различий работают и без этих допущений. Наиболее часто используемые меры различий представлены в таблице.
Пример: предположим, что вы выращиваете помидоры, и вам необходимо определить, какой из двух сортов демонстрирует лучшую урожайность. Чтобы это сделать, вам необходимо подсчитать количество помидоров при каждом кусте и занести эту информацию в таблицу. Дальше вы применяете к этим данным t-критерий Стьюдента и по нему судите о наличии различий между сортами. Если сортов больше двух, то ваш выбор — дисперсионный анализ с последующим сравнением с помощью специальных post-hoc-критериев.
МЕРЫ РАЗЛИЧИЙ ДЛЯ СВЯЗАННЫХ ВЫБОРОК
Позволяют определить различия между двумя связанными выборками. Также делятся на параметрические и непараметрические:
Пример: Представим, что вы преподаватель курсов повышения квалификации, и вам интересно узнать, вынесли ли ваши слушатели что-нибудь полезное с занятий. Чтобы это сделать, вам необходимо разработать некоторый проверочный тест и раздать его слушателям до начала занятий и после их окончания. T-критерий Вилкоксона позволит вам проверить, стали ли слушатели лучше знать ваш предмет. Если же вы провели несколько таких измерений, то ваш вариант — это критерий Фридмана.
МЕРЫ СВЯЗИ
Данный класс критериев (называемых также коэффициентами корреляции) позволяет найти взаимосвязь между переменными. Математически взаимосвязь — это совместное изменение переменных.
Если она положительна и равна 1, то увеличение значения первой переменной сопровождается увеличением значения второй. Если она отрицательна (-1), то высокое значение первой переменной сопровождается низким значением второй. Коэффициент корреляции, равный 0, обозначает отсутствие взаимосвязи.
Самыми популярными коэффициентами корреляции являются r Пирсона (параметрический) и p Спирмена (непараметрический).
Пример: вы решили провести психологическое исследование и выяснить, существует ли взаимосвязь между интеллектом и уровнем дохода. Для этого вам необходимо найти группу испытуемых, измерить их интеллект, узнать их среднемесячный доход и найти коэффициент корреляции. Если он высок и положителен, то более интеллектуальные люди получают больше денег.
Если вы получили подобный результат, необходимо быть очень внимательными при его интерпретации. Поскольку равновероятными могут быть следующие варианты.
Более умные люди получают работу с более высоким заработком.
Высокий доход позволяет больше времени уделять саморазвитию в целом и развитию интеллекта в частности.
Существует неизвестная переменная (фактор), обусловливающая эту взаимосвязь.
Взаимосвязь является случайным совпадением.
РЕГРЕССИОННЫЙ АНАЛИЗ
Данная группа методов позволяет построить функциональную математическую модель — уравнение, которое помогает предсказать значение некоторой целевой переменной, используя значения ряда переменных, называемых предикторами.