Читаем Статьи и речи полностью

где коэффициенты p, q, r постоянны. Когда все p равны соответствующим q, функция называется самосопряжённой. Она может быть тогда представлена геометрически как соотношение между радиусом-вектором из центра эллипсоида и перпендикуляром на касательную плоскость.

Можно заметить, что даже здесь, где мы, казалось бы, достигли чистых сфер науки, не запятнанных физическими приложениями, один из векторов необходимо есть линия, тогда как другой определяется как нормаль к плоскости, как и во всех других, уже упомянутых парах векторов3*.

Другое различие между физическими векторами основано на ином принципе и разделяет их на векторы, определяемые по отношению к вращению. На замечательные аналогии между этими двумя классами векторов указал Пуансо в своём труде о движении твёрдого тела. Но наиболее замечательная иллюстрация этих аналогий основана на двух различных точках зрения, с которых можно рассматривать связь между электричеством и магнетизмом.

Гельмгольц показал нам в своей знаменитой работе о вихревом движении, как провести аналогию между электромагнитными и гидро-кинетическими явлениями, в которых магнитная сила представлена скоростью жидкости, родом поступательного движения, а электрический ток представлен вращением элементов жидкости. Он не предлагает этого в качестве объяснения электромагнетизма, так как хотя эта аналогия и совершенна по форме, но динамика обеих систем чрезвычайно различна.

Согласно Амперу и его исследованиям, электрические токи рассматриваются, однако, как род поступательного движения, а магнитная сила — как сила, зависящая от вращения. Я вынужден согласиться с этой точкой зрения, так как электрический ток связывается с электролизом и другими явлениями, в которых, несомненно, мы имеем поступательное движение, тогда как магнетизм связан с вращением плоскости поляризации света, которое, как показал Томсон, заключает в себе действительное вращательное движение.

Гамильтоновский оператор , применённый к любой векторной функции, превращает её из поступательного движения во вращение или из вращения в поступательное движение, в зависимости от рода вектора, к которому он применяется.

В заключение я предложу на рассмотрение некоторые математические термины, служащие для обозначения результатов гамильтоновского оператора . Я буду очень признателен тому, кто даст мне какой-нибудь совет по этому вопросу, так как я чувствую, что моя способность к установлению наименований очень слаба и что она может с успехом осуществляться лишь в сотрудничестве с другими.

есть операция

i

x

+j

y

+k

z

где i, j, k — единичные векторы, параллельные соответственно x, y, z. Результатом двукратного повторения на любом объекте этой операции является хорошо известный оператор (Лапласа):

^2=

^2

x^2

+

^2

y^2

+

^2

z^2

.

Нахождением квадратного корня этой операции мы обязаны Гамильтону; но большинство данных здесь приложений и развитие теории этого оператора дано профессором Тэтом и напечатано в ряде статей, из которых первая помещена в «Proceedings of the Royal Society of Edinburgh» от 28 апреля 1862 г., а наиболее полная «О теоремах Грина и других, связанных с ними» — в «Transactions of the Royal Society of Edinburgh», 1869—1870 г.

Прежде всего я предлагаю назвать результату ^2 (оператор Лапласа) с обратным знаком концентрацией величины, к которой она применена.

Действительно, если Q есть скалярная либо векторная величина, являющаяся функцией положения точки, и если мы возьмём интеграл Q по объёму шара радиуса r, то, разделив его на объём шара, мы получим Q, среднее значение Q внутри шара. Если Q0 есть значение Q в центре шара, то при малом r

Q

0

-

Q

=Cr

2

2

Q,

т.е. значение Q в центре шара превышает среднее значение Q внутри шара на величину, зависящую от радиуса и от ^2Q. Поэтому раз ^2Q означает избыток значения Q в центре над его средней величиной внутри шара, то я назову его концентрацией Q.

Если Q — величина скалярная, то и концентрация её — скаляр. Так, если Q — электрический потенциал, то ^2Q есть плотность вещества, создающего потенциал.

Если Q — векторная величина, то Q0 и Q — векторы и ^2Q — также вектор, выражающий собой избыток равномерно распределённой силы Q0 приложенной ко всему веществу шара, над результирующей действительной силы Q, действующей на все части шара.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука