Как он позже признался, на Google он был настроен изначально. Даже Кай Юй был уверен в том, что Хинтон в конечном счете отдаст предпочтение Google или какой-то другой американской компании, потому что с его спиной перебираться в Китай было проблематично. В этой связи Юй почитал за счастье уже то, что компания Baidu оказалась в числе претендентов. Этот аукцион, заставивший американских конкурентов пойти во все тяжкие, полагал он, показал руководителям Baidu, какой огромный потенциал на многие годы вперед таится в технологии глубокого обучения.
Хинтон остановил аукцион потому, что найти оптимальное место для проведения дальнейших исследований было для него гораздо важнее, чем получить максимально возможную цену. Когда он дал знать представителям Google, что останавливает торги на отметке 44 миллиона долларов, они поначалу решили, что он шутит, ведь цену можно было еще поднимать и поднимать. Но он не шутил, и его аспиранты так же хорошо понимали ситуацию, как и он сам. Они были ученые, а не предприниматели, и они преданы в первую очередь идее.
Но Хинтон до конца сам не сознавал, насколько ценной окажется эта идея. Никто этого не сознавал. Вместе с небольшой группой других ученых – распределенных по все тем же четырем компаниям, которые участвовали в аукционе, плюс еще один американский интернет-гигант, а впоследствии плюс еще один новый стартап – Хинтон и его аспиранты сумели внедрить эту идею в самое сердце IT-индустрии. Это позволило резко ускорить прогресс разработок искусственного интеллекта, включая разработки в области голосовых помощников, беспилотных автомобилей, робототехники, кибермедицины, а также – хоть это и не входило в первоначальные намерения – кибероружия и кибербезопасности. «Это изменило мой (и не только мой) взгляд на высокие технологии», – говорит глава инженерного подразделения Google Алан Юстас.
Некоторые ученые, в частности Демис Хассабис, молодой нейробиолог и один из основателей DeepMind, даже поверили в то, что им со временем удастся создать такую машину, которая будет способна делать
Когда эта технология обучения только начинала распространяться в интернете, никто еще толком не сознавал, что обучающиеся машины впитывают в себя также и все предрассудки своих создателей. Ученые, первоначально занимавшиеся их созданием, – это по преимуществу белые мужчины, и все нюансы проблематики они оказались способны уловить только тогда, когда им на них указали представители нового поколения исследователей, включающего в себя женщин и небелых. По мере того, как эта технология продвигается все дальше и глубже – в системы здравоохранения, государственной безопасности и в вооруженные силы, – этот перекос может иметь серьезные последствия. Технология глубокого обучения обладает внутренней силой, которую до конца не способны контролировать даже сами разработчики этой технологии, особенно когда эта сила попадает в руки компаний-гигантов, движимых ненасытным стремлением к прибыли.