Возможность направленного синтеза соединений с заданными электрическими свойствами. Перспективно и использование достижений координационной химии в области создания неорганических материалов. Достаточно напомнить, что основные гидрометаллургические процессы в производстве редких, цветных, благородных, радиоактивных металлов непременно включают образование их координационных соединений. Так что детальное изучение этих процессов непременно будет способствовать разработке новых электрохимических и гидрометаллургических методов производства металлов.
Уже сегодня самое широкое применение нашли координационные соединения при получении металлов высокой степени чистоты, материалов для квантовой электроники, микроэлектроники и других областей новой техники. Недаром, оценивая значение "заслуг" координационной химии вообще и советской ее школы в частности, известный английский химик Дж. Чатт сказал: "...создание таких аппаратов современной техники, как атомные реакторы и ракеты, потребовало исследовать заново химию металлических элементов для нахождения лучших способов их очистки и получения новых материалов, пригодных для продолжительного использования в напряженных физических условиях. Возможно, не случайным было и то, что единственная страна, которая посвятила значительную часть своих усилий в области химических исследований в 20-30-х годах разработке координационной химии, была и первой страной, пославшей ракету на Луну".
Координационная химия активно вторгается в такую актуальную область современной промышленности, как энергетика. Речь идет прежде всего о химии гидридов (соединений с водородом) металлов и бора. Перспективы многоцелевого применения водорода в химической промышленности, а в будущем, возможно, и в энергетике - мощный стимул развития координационной химии гидридов. И советские ученые уже внесли важный вклад в развитие этой области.
В нашей стране ведутся систематические поиски и так называемых энергоемких соединений, все шире используемых в качестве сильных неорганических окислителей. Сюда в первую очередь следует отнести координационные соединения, в которые в качестве лигандов входят окислители. Большие успехи достигнуты в области синтеза и исследований другого класса неорганических соединений - фторидов и окислов галогенов и инертных газов.
Многого можно ожидать от исследований механизма действия микроэлементов, играющих важную роль в жизни растений и животных. А ведь понимание природы соединений, в форме которых микроэлементы окалываются активными, как соединений координационных, ставит науку о микроэлементах на качественно новый, современный уровень. Так, например, только "взгляд" на витамин B12 с позиций координационной химии позволил в свое время ученым понять, почему столь благотворным оказывается для организма это координационное соединение кобальта. Быстрое развитие биоорганической химии непосредственно связано также с выяснением важной роли координационных соединений в основных процессах жизнедеятельности и прежде всего фотосинтеза, дыхания, во время которого происходит обратимое присоединение кислорода к гемоглобину, с выяснением механизма действия биологических мембран.
Большой вклад в изучение мембраноактивных соединений, способствующих избирательному переходу ионов металлов через биологические и искусственные мембраны, а также изучение механизмов мембранного транспорта в клетке принадлежит школе академика Ю. А. Овчинникова.
Или, скажем, такой пример всепроникаемости, всеобъемлемости координационной химии: один из важнейших процессов в круговороте веществ в природе - фиксация азота воздуха микроорганизмами - невозможен без участия ее соединений. Именно поэтому нахождение способа такой фиксации при обычной температуре и давлении - задача, над которой сегодня работают многие химики мира.
Одним из первых биокоординационной химией начал заниматься уже упоминавшийся мной академик А. А. Гринберг еще в 30-х годах, осуществивший систематические исследования в области биоактивных координационных соединений кобальта. И в том, что в ближайшие годы поле деятельности координационных соединений в качестве физиологически активных и лекарственных препаратов значительно расширится, нет никаких сомнений.
Уже сегодня широко ведутся исследования по применению координационных соединений платины в химиотерапии опухолей, изучаются взаимодействия соединений металлов платиновой группы с ДНК и другими важными в биохимическом плане лигандами, продолжаются поиски корреляций между биологической активностью и физико-химическими свойствами комплексов.
Успехи координационной химии ярко проявились в аналитической химии. Так, развитие учения об изменении цвета органических реагентов, входящих в качестве лигандов во внутреннюю сферу комплексов, привело к созданию реагентов-индикаторов многоцелевого назначения типа "Арсеназо-П", и "Арсеназо-Ш" и многих других, получивших широкое распространение благодаря работам советских исследователей.