Весть об открытии нового металла была встречена зарубежными учеными с некоторым недоверием. Но после повторных опытов крупнейший в то время химик Я. Берцелиус написал К. Клаусу: "Ваше имя будет неизгладимо начертано в истории химии".
Долгое время рутений и другие платиновые металлы не находили промышленного применения. После Великого Октября в 1918 году был создан Институт по изучению платины и других благородных металлов. Под руководством его первого директора выдающегося химика профессора Л. А. Чугаева были разработаны первые технологические процессы отечественного аффинажа (разделения) всех платиновых металлов. Уже в 20-х годах страна стала создавать свою платиновую промышленность.
Сейчас платиновые металлы добывают при переработке полиметаллических руд. Содержание в них платины и палладия исчисляется граммами на тонну, а других платиноидов - миллиграммами. Даже в крупномасштабном производстве балапс этих металлов ведется с точностью до граммов. Сегодня платиновые металлы не только активы национальных банков, но и важнейший технический материал. В ряде случаев они не могут быть заменены ничем другим.
Давно известна уникальная способность платиновых металлов резко ускорять химические реакции, лежащие в основе современного многотоннажного производства многих продуктов. Окислением аммиака на сплавах платины и родия получают азотную кислоту, необходимую для производства удобрений и многих других важных продуктов. Платина входит в состав катализаторов, используемых для получения высокооктановых бензинов, а также полупродуктов для производства красителей, фармацевтических препаратов, порохов, взрывчатых веществ, органического стекла и других полимерных материалов.
В последнее десятилетие резко возросло применение палладия в качестве катализатора.
Высокая коррозионная стойкость и тугоплавкость платиновых металлов и сплавов сделала их незаменимыми в различных реакторах для получения особо чистых веществ и материалов для радио- и электронной техники, изготовления фильер, в производстве стеклянного волокна и т. п. Нашел свое применение здесь и рутений, особенно при работе в агрессивных средах при повышенных температурах.
Использование палладия в качестве контактов в технике слабых токов (радио, телефон, телеграф) исключает образование помех. В технике сильных токов контакты из сплавов платиновых металлов обладают исключительно высокой надежностью. Словом, развитие научно-технического прогресса заставило столь широко использовать в технике платиновые металлы, что для традиционного ювелирного дела, например, остается их очень незначительная часть.
Но и на этом поприще уникальные возможности рутения раскрыты не в полной мере. Еще сказывается сложность его выделения из природного сырья, а также отделения от других платиновых металлов. Вот почему в нашей стране исследование соединений, образуемых рутением, всегда привлекало внимание специалистов.
В Институте общей и неорганической химии имени Н. С. Курнакова (ИОНХ) АН СССР - одном из важнейших центров исследований по координационной химии в нашей стране, руководить которым я имею честь, - изучение свойств платиновых металлов, в том числе и рутения, проводится широким фронтом. Это вполне естественно, ибо ИОНХ - восприемник тематики и научных идей Института по изучению платины и других благородных металлов. Работы научных сотрудников института в области координационной химии платиновых металлов отмечены крупными достижениями. Но сейчас хотелось бы остановиться на исследовании окисных соединений рутения.
До середины 60-х годов соединения благородных металлов с кислородом были изучены слабо. Однако открытие в 1962 году немецким ученым X. Шефером и его сотрудниками металлического характера электропроводности у двуокиси рутения стимулировало интерес химиков к такого рода материалам, расширило возможности их практического использования.
Выяснилось, что окисные соединения рутения, родия, иридия, осмия и других платиновых металлов обладают уникальным сочетанием физических и химических свойств; инертностью по отношению к окислительным и восстановительным реагентам, термоустойчивостью, износостойкостью, широким диапазоном электрической проводимости в зависимости от своего состава. Эти удивительные качества позволили создать титановые электроды (аноды) с поверхностно инертным покрытием из окислов рутения. Они экономически более выгодны при производстве хлора и каустической соды электролизом, чем угольные.