Многие сервисы в основном занимаются считыванием данных. Вспомним сервис каталогов, который хранит информацию для выставленных на продажу товарных позиций. Мы добавляем записи для новых товарных позиций на весьма нерегулярной основе, и совсем неудивительно, что на каждую запись в каталог мы имеем по 100 считываний данных нашего каталога. К счастью, масштабирование для чтения дается значительно легче масштабирования для записи. Здесь большую роль может сыграть кэширование данных, которое вскоре будет рассмотрено более подробно. Еще одна модель предусматривает использования
В системе управления реляционными базами данных (RDBMS), подобной MySQL или Postgres, данные могут копироваться из основного узла в одну или несколько реплик. Зачастую это делается с целью обеспечения безопасного хранения копий данных, но может использоваться также для распределения операций чтения. Сервис может направлять все запросы на запись к единственному основному узлу, но при этом распределять запросы на чтение между несколькими репликами, предназначенными для считывания данных (рис. 11.6). Резервное копирование из основной базы данных к репликам происходит через некоторое время после записи. Это означает, что при такой технологии считывания до завершения репликации данные могут быть
Рис. 11.6. Использование реплик для чтения с целью масштабирования операций считывания данных
Мода на использование реплик чтения в целях масштабирования появилась много лет назад, но сегодня я бы порекомендовал вам присмотреться в первую очередь к кэшированию, от которого можно получить существенно больше преимуществ с точки зрения производительности, зачастую потратив на это меньше времени и сил.
Масштабирование для производства записей
Масштабирование чтения дается сравнительно легко. А как насчет записей? Один из подходов предусматривает применение
Сложность с фрагментацией операций записи данных заключается в управлении запросами. Когда смотришь на отдельно взятую запись, все представляется несложным, поскольку можно просто применить функцию хеширования, чтобы найти нужный экземпляр данных, а затем извлечь его из соответствующего фрагмента базы. А как быть с запросами, данные которых разбросаны по нескольким узлам, например предписывающими найти всех клиентов старше 18 лет? Если требуется запросить все фрагменты базы, то нужно либо запросить каждый отдельно взятый фрагмент и объединить ответы в памяти, либо иметь альтернативное хранилище для чтения, в котором доступны данные из обоих наборов. Зачастую отправкой запросов, распространяющихся на несколько фрагментов, управляет асинхронный механизм с использованием кэшируемых результатов. Например, в Mongo для выполнения таких запросов используются задания отображения и свертки (map/reduce jobs).
При использовании фрагментированных систем возникает вопрос: что случится, если понадобится добавить еще один узел базы данных? В прошлом для этого нужен был довольно длительный простой, особенно для крупных кластеров, поскольку могла потребоваться остановка работы всей базы данных и перебалансировка хранящейся в ней информации. Совсем недавно во многих системах появилась поддержка добавления фрагментов к не прекращающей работу системе, в которой перебалансировка данных осуществляется в фоновом режиме. К примеру, Cassandra справляется с этим очень хорошо. Добавление фрагментов к существующим кластерам — занятие не для слабых духом, так что все нужно тщательно проверить.
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии