Читаем Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa полностью

После того, как вы напишите и развернете код, серверы Google сразу же начнут управлять этой облачной функцией.

И для нашего чат-бота бесплатного плана Spark Firebase будет достаточно.

И здесь во встроенном редакторе, у нас также есть файл package.json, и нам нужно изменить его.

Нам нужно добавить зависимость от Google базы данных Datastore, которую мы будем использовать для хранения заказа пиццы.

Поэтому мы добавим @google-cloud/datastore.

После этого нажмем кнопку Deploy развернуть.

В результате в наш проект будет добавлен облачный сервис Cloud Functions for Firebase, где будет развернут наш webhook.

Чтобы проверить развернут ли наш webhook, откроем страницу нашего Google проекта Dialogflow и нажмем Cloud Functions.

И здесь мы увидим нашу развернутую облачную функцию.

Теперь более подробно рассмотрим код webhook.

Здесь, у нас есть объявление о некоторых необходимых пакетах, которые нам нужно импортировать, и нам также необходимо импортировать пакет хранилища данных Datastore.

Поэтому здесь мы импортируем пакет Datastore.

И в строке 12 мы создадим новый экземпляр хранилища данных, привязав его к идентификатору нашего Google проекта.

Идентификатор проекта можно посмотреть в консоли проектов по адресу, указанному на слайде.

И здесь у нас есть основная функция dialogflowFirebaseFulfillment, где у нас есть функция для приветствия агента, и у нас есть функция для агента, который ничего не понимает.

Но у нас нет функции для заказа пиццы, и это то, что мы собираемся сюда добавить.

И далее, как только вы создали функцию, вам нужно сопоставить намерение с выполнением этой функции, с помощью добавления записи в карту намерений Map.

И если мы включим, например, Fulfillment в намерении приветствия, тогда если мы наберем в Try it – hello, чат-бот ответит не фразой намерения, а функцией приветствия агента, которая определена в вебхук.

Теперь, давайте создадим функцию для заказа пиццы.

Здесь у нас есть функция order pizza, которая определяет переменные для извлечения параметров из пользовательского запроса.

Она создает ключ для хранения в базе данных, а затем создает новую сущность.

Эта сущность будет содержать значения переменных.

Возврат этой функции – это действие сохранения содержимого созданной нами сущности в Datastore.

И в конце, мы должны добавить запись в карту намерений.

После этого развернем заново наш вебхук.

И теперь нужно включить Fulfillment для намерения order.pizza.upsell.drink-no, чтобы после того, как клиент отказался от напитка, мы сохранили наш заказ в базе данных.

Теперь все готово к работе и в панели Try it наберем

Могу ли я получить пиццу.

Затем ответим на вопрос о начинке и на вопрос о размере.

В результате получим ответ от агента, что наш заказ размещен.

Нажав на кнопку Diagnostic info можно посмотреть запросы и ответы вебхука в формате Json.

Чтобы проверить, сохранился ли заказ, откроем Google проект и в боковой панели выберем Datastore – Entites.

И здесь мы увидим, что наш заказ успешно сохранился в облаке Google.

<p><strong>Google Dialogflow. Интеграция с Telegram</strong></p>

Dialogflow позволяет интегрировать вашего чат-бота с различными платформами.

Это такие популярные приложения как Google Assistant, Slack и Facebook Messenger и другие.

В качестве примера мы рассмотрим интеграцию нашего чат-бота с мессенджером Telegram.

Опция интеграция Telegram позволяет легко создавать ботов Telegram с пониманием естественного языка на основе технологии Dialogflow.

И для начала работы, откроем Telegram.

И здесь наберем @BotFather.

Далее нажмем кнопку Start.

Здесь нажмем ссылку /newbot и введем имя бота ex_bot.

И здесь мы должны скопировать сгенерированный токен доступа.

Вернемся в Dialogflow и включим интеграцию с Telegram.

В результате откроется диалоговое окно.

И здесь мы должны ввести сгенерированный токен доступа.

И нажать кнопку Start.

Вернемся в Telegram и откроем бота по его ссылке.

И здесь, нажав кнопку Start мы можем разговаривать с нашим чат-ботом.

<p><strong>ChatterBot</strong></p>

ChatterBot – это библиотека Python, которая позволяет легко генерировать автоматические ответы на вводимые пользователем данные.

И ChatterBot использует набор алгоритмов машинного обучения для получения различных типов ответов.

И ChatterBot является независимой от языка библиотекой, что позволяет обучать чат-бота говорить на любом языке.

Кроме того, машинное обучение ChatterBot позволяет экземпляру агента улучшить свои знания о возможных ответах при дальнейшем взаимодействии с людьми и другими источниками данных.

Изначально, необученный экземпляр ChatterBot запускается без знания того, как общаться.

Каждый раз, когда пользователь вводит фразу, библиотека сохраняет введенный текст и текст ответа.

По мере того, как ChatterBot получает больше входных данных, количество ответов, которыми он может ответить, и точность каждого ответа по отношению к вводу пользователя увеличивается.

Программа выбирает наиболее подходящий ответ, выполняя поиск наиболее подходящего ответа, который соответствует вводу.

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии