Читаем Создаем робота-андроида своими руками полностью

Система балласта должна позволять дирижаблю «зависать» в положении нулевой плавучести на одном или нескольких этажах здания. Если создание такой балластной системы представляет трудность, то необходимо разместить дирижабли с нулевой плавучестью на каждом этаже. При смене этажа оператор должен легко подключаться к неиспользуемому роботу телеслежения, находящемуся на требуемом этаже.

Физические ограничения накладываются на дирижабли в силу их малого веса. Например, дирижабль не может толчком открыть дверь. Здания требуют реконструкции, при которой двери и лифты будут управляться электронным способом по командам, поступающим с дирижабля.

<p>Набор для конструирования дирижабля</p>

Мы будем изготовлять дирижабль из прочного материала типа Mylar. Материал можно соединять путем горячей сварки с помощью бытового утюга. Существует множество возможных форм дирижаблей: в виде летающей колбасы, в виде крыла дельтаплана или обычного дирижабля – шара типа Goodyear. Я предлагаю простейшую конструкцию – дирижабль в форме подушки.

Изготовить дирижабль в форме подушки очень просто. Согните лист материала Mylar пополам (блестящей стороной наружу). Соедините сваркой его три открытых стороны, оставив небольшое отверстие внизу для штуцера наполнения газом, и все готово.

<p>Гелий</p>

Гелий продается в баллонах во многих магазинах товаров для «вечеринок» и предназначен для надувания воздушных шаров. Баллоны по форме напоминают баллоны для пропана. Если в вашем районе нет подобного магазина, поищите поставщика в «Желтых страницах».

<p>Гелий или водород</p>

Когда я начинал проект, то подумывал об использовании водорода вместо гелия, по той причине, что поскольку вес водорода почти в два раза меньше гелия, то можно ожидать увеличения подъемной силы в два раза. Правильная мысль? Ошибка!

Мое предположение о том, что вес водорода почти в два раза меньше веса гелия оказалось правильным (см. табл. 14.1), но я неверно подсчитал подъемную силу, и вот почему. Подъемная сила возникает при замещении объема воздуха водородом или гелием аналогично воздушному пузырьку в воде. Давайте используем эту аналогию. Плотность воздуха меньше плотности окружающей воды, поэтому пузырек выталкивается на поверхность. Аналогично, гелий имеет меньшую плотность, чем окружающий воздух, и поэтому он поднимается вверх. Из табл. 14.1 видно, что поднятие гелия или водорода вверх в толще более плотного газа, т. е. воздуха, определяется их меньшей плотностью.

Таблица 14.1

Итак, какова подъемная сила шара с гелием объемом 0,14 куб.м.?

Вес вытесненного воздуха = 0,14 (1,29) = 0,18 кг

Вес 0,14 куб.м. гелия = 0,14 (0,178) = 0,025 кг

Подъемная сила = 0,18 кг – 0,025 кг = 0,155 кг

Подъемная сила достаточно велика! Это произошло потому, что мы не вычли вес самого шара. Допустим, шар весит 0,1 кг, тогда полезная подъемная сила (0,155 кг-0,1 кг) уменьшится до 0,055 кг, или 55 г.

Вес 0,14 куб.м. водорода = 0,14 (0,09) = 0,012 кг

Подъемная сила = 0,18 кг – 0,012 кг = 0,168 кг

Разница подъемной силы для шара объемом 0,14 куб.м. составит:

0,168 кг – 0,155 кг = 0,013 кг, или 13 г.

Разница подъемной силы оказалась очень невелика, поэтому не стоит подвергаться риску, применяя водород. Я бы советовал использовать исключительно гелий.

<p>Размеры дирижабля</p>

Размер куска материала Mylar, который используется для изготовления дирижабля, после сгибания пополам составляет в плоском виде 860х 1422 мм. Вес материала составляет 93 г. Достаточно сложно определить количество гелия, заполняющего дирижабль. Для грубой оценки я буду считать, что дирижабль будет иметь форму цилиндра. Я знаю, что подушка не имеет цилиндрической формы, но, как я уже сказал, это грубая оценка. Сперва найдем диаметр. Кусок материала имеет длину 860х 2, т. е. длина окружности составит 1720 мм. Длина окружности равна радиусу, умноженному на 2п. Вычисляем радиус, который оказывается равным 280 мм. Объем цилиндра равен квадрату радиуса, умноженному на п и на высоту цилиндра. Высота в данном случае равна 1422 мм. Отсюда объем цилиндра будет равен 0,32 куб.м.

Дирижабль не будет заполнен газом до полного объема. В этом случае я буду считать, что заполнение составит 70 % расчетной величины, или около 0,22 куб.м. гелия.

Расчет подъемной силы

Вес вытесненного воздуха = 0,22 (1,29) = 0,29 кг

Вес гелия = 0,22 (0,178) = 0,04 кг

Вес оболочки из материала Mylar = 0,09 кг

Полезная подъемная сила = + 0,29 – 0,04 – 0,09 = 0,16 кг, или 160 г.

<p>Конструкция дирижабля</p>
Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука