Читаем Создаем робота-андроида своими руками полностью

Нечеткая логика представляет собой альтернативу оцифрованному графику, представленному под номером 3 на рис. 6.28. График, оцифрованный с высоким разрешением, позволяет измерять рост с такой же точностью. Какова причина применения нечеткой логики вместо использования оцифрованной модели? Дело в том, что методы нечеткой логики требуют более простых форм математического обеспечения и функций научения.

Для моделирования нечеткой логики в PIC микроконтроллере для групп необходимо создать численные интервалы значений. Этим мы займемся в следующем проекте.

<p>Устройство нечеткой логики – система слежения за направлением источника света</p>

Сейчас мы приступим к изготовлению устройства – системы слежения за направлением источника света, использующего принцип нечеткой логики. Система отслеживает направление на источник света, применяя нечеткую логику.

Для конструкции системы слежения нам потребуются два CdS фотоэлемента, которые представляют собой светочувствительные резистивные датчики (см. рис. 6.29). Сопротивление такого элемента изменяется пропорционально интенсивности светового потока, падающего на чувствительную поверхность фотоэлемента. В условиях темноты элемент имеет наибольшее сопротивление.

Рис. 6.29. Электрические характеристики CdS фотоэлемента

В продаже имеется много различных типов CdS фотоэлементов. Выбор подходящего элемента основывается на темновом сопротивлении элемента и сопротивлении светового насыщения. Термин «сопротивление светового насыщения» означает минимальное сопротивление элемента, которое перестает уменьшаться при повышении уровня освещенности, т. е. становится насыщенным. Я использую CdS фотоэлементы, имеющие темновое сопротивление порядка 100 кОм и сопротивление светового насыщения порядка 500 Ом. При средних условиях освещенности сопротивление варьирует в пределах 2,5-10 кОм.

Для проекта потребуется два CdS фотоэлемента. Необходимо проверить каждый элемент по отдельности, поскольку внутри элементов одного типа наблюдается разброс параметров, что потребует изменения коэффициента шкалирования. Для команды pot я использовал емкость 0,022 мкФ и параметр множителя шкалы 225.

Принципиальная схема устройства изображена на рис. 6.30. CdS фотоэлементы подключены к шине порта В (физические номера выводов 8 и 9).

Рис. 6.30. Схема системы слежения за источником света

Фотоэлементы закреплены на небольшой пластине из пластика или дерева (см. рис. 6.31). Для выводов фотоэлементов в пластине просверлены небольшие отверстия. С обратной стороны к выводам подпаяны проводники, соединенные с выводами PIC микроконтроллера.

Рис. 6.31. Конструкция блока датчиков

Для закрепления вала редуктора двигателя просверлено отверстие от 2,4 мм до 3 мм. Вал редуктора пропущен через отверстие в блоке датчиков и закреплен клеем (см. рис. 6.32).

Рис. 6.32. Фотография блока датчиков, закрепленных на редукторе двигателя

Работа системы слежения показана на рис. 6.33. При одинаковом освещении обоих датчиков, их соответствующие сопротивления примерно одинаковы. В пределах ±10 единиц PIC программа считает их одинаковыми и не включает устройство поворота. Иными словами, образуется группа «одинаковости» с размахом 20 единиц. Подобная группа и есть группа нечеткой логики.

Рис. 6.33. Работа блока датчиков в зависимости от направления на источник света

Когда один из датчиков попадает в зону тени, т. е. разность показаний датчиков превышает диапазон 20 единиц, PIC микроконтроллер запускает двигатель, поворачивающий блок сенсоров в сторону источника света (т. е. равной освещенности датчиков).

Управление двигателем постоянного тока

Для поворота блока датчиков в сторону источника света устройство использует двигатель постоянного тока с редуктором (см. рис. 6.34). Коэффициент замедления редуктора 4000:1. Вал редуктора имеет скорость примерно 1 оборот в минуту. При повторении конструкции для поворота блока датчиков рекомендуется использовать двигатель с редуктором, имеющим подобные характеристики.

Рис. 6.34. Фотография конструкции устройства слежения в сборе

Блок датчиков прикреплен (приклеен) к валу редуктора двигателя. Двигатель через редуктор может поворачивать блок по часовой стрелке или против часовой стрелки в зависимости от направления тока, протекающего через двигатель.

Для обеспечения реверсирования направления вращения двигателя необходимо устройство, обеспечивающее протекание тока в обоих направлениях. Для этой цели мы используем мостовую схему. В мостовой схеме используются четыре транзистора (см. рис. 6.35). Рассмотрим каждый транзистор как простой ключ, как показано в верхней части рисунка. Схема названа мостовой, поскольку транзисторы (ключи) включены нее в виде моста.

Рис. 6.35. Работа мостовой схемы и ее устройство

При замыкании ключей SW1 и SW4 двигатель вращается в одном направлении. При замыкании ключей SW2 и SW3 двигатель вращается в противоположном направлении. Если ключи разомкнуты, то происходит остановка двигателя.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука