Читаем Солнечный луч полностью

Задумываясь об энергетике будущего, о необходимости широкого использования солнечной энергии, ученые серьезно рассматривают и другие возможности, еще вчера относившиеся к области чистой фантастики. Так, академик Н. Н. Семенов полагает возможным осуществить, а затем и использовать в промышленных масштабах химическую систему, способную моделировать процесс фотосинтеза, накапливать солнечную энергию в виде энергии химической связи атомов органических соединений. Основания для такого смелого предположения Н. Н. Семенов видит в открытии ученых М. Е. Вольпина и А. Е. Шилова, осуществивших синтез аммиака и гидразина (фиксацию азота воздуха) при обычных температурах и давлении.

Промышленный способ получения аммиака протекает при высоких температурах и давлениях. В клубеньках же бобовых растений бактерии осуществляют фиксацию азота в природных условиях. Этот процесс осуществляется микробами с помощью ферментных белков. Молекулы ферментов громадны. Но непосредственно осуществляет реакцию небольшая активная группа атомов, содержащая ионы ванадия или молибдена. Вольпин и Шилов показа-сли, что гидроокись ванадия фиксирует азот с КПД, близким к 100%. Четыре атома ванадия, переходя из двухвалентного в трехвалентное состояние, дают достаточно энергии для образования молекулы гидразина, а в несколько иных условиях — аммиака.

Однако задача решена лишь наполовину. Модель биологического процесса усвоения азота должна предусматривать и механизм восстановления ванадия в двухвалентное состояние: реакция будет идти только в этом случае. По аналогии с живым организмом для этой цели следовало бы использовать солнечную энергию. Если работы, ведущиеся в этой области, окажутся плодотворными, можно будет наладить искусственный фотосинтез в промышленных масштабах. На огромных пространствах энергетических полей будут размещены кассеты с водным раствором взаимодействующих веществ и с непрерывным выходом продуктов реакции — богатых энергией соединений азота, углерода, водорода и кислорода. Производительность таких полей может вдвое-вчетверо превысить эффективность работы природных фотосинтезирующих машин-растений. Но и это — только планы, проекты.

А каковы реальные возможности сегодняшнего дня? Они связаны в первую очередь с решением задачи сбора и концентрации солнечной энергии. Честь открытия такого способа принадлежит, очевидно, Архимеду. Древние источники сообщают, что более двух тысяч лет назад, в 212 г. до нашей эры, защищая родной город от нападения римлян, Архимед вывел население Сиракуз на стены города, вооружил их зеркалами и, сконцентрировав все их зайчики в одну точку, сжег римский флот. Так ли это было в действительности — сказать трудно, но идея сама по себе родилась в древности. Эффективность такого способа использования энергии Солнца сильно зависит от расстояния до объекта, приговоренного к сожжению. Чтобы поджечь сухое дерево на расстоянии 30 м, нужно вогнутое зеркало диаметром 3 м. Но если увеличить расстояние до 1 км, диаметр зеркала нужно увеличить до 500 м.

Вряд ли кому-нибудь придет в голову заняться таким делом в наши дни. Но американский физик Дж. Пирс рассчитал, что чаша современного стадиона — весьма удобное место для экспериментов подобного рода и что недовольные болельщики могут попросту сжечь неугодного судью. Нужно только предварительно запастись кусками картона с наклеенной на них фольгой и потом одновременно направить все солнечные зайчики на жертву.

Но если сконцентрировать солнечный зайчик для того, чтобы плавить металлы, получится солнечная печь. Гелиопечи, работающие во Франции, Испании, США, Индии, Алжире и других странах Африки, способны плавить металлы, кварц при 1500—2000° и более. На Пиренеях сооружена гигантская установка с 10-метровым параболическим зеркалом, собранным из 3500 маленьких стеклянных зеркал. В солнечном зайчике огромного зеркала, имеющем диаметр 50 мм, температура достигает 3400°С; это позволяет в течение 1 часа выплавлять 60 кг стали. Конечно, есть более дешевые способы плавки стали, но в солнечной печи получается особая сталь; она совершенно свободна от загрязнений и примесей, неизбежных при других методах плавки. Такой металл годен для самых ответственных специальных изделий.

Еще более крупные гелиопечи позволят в будущем довести температуру до 4700°, а количество выплавляемого металла — до нескольких тонн. Теоретический предел температуры в таких печах — 5700°: невозможно путем концентрации лучей достичь температуры, более высокой, чем температура источника — в данном случае Солнца. Чтобы достичь более высоких температур, нужно использовать искусственный источник излучения — вольтову дугу.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука