Усовершенствование технологии, а также применение оптических фильтров позволили получить селеновые фотоэлементы, спектральная чувствительность которых практически повторяла кривую чувствительности человеческого глаза. Улучшенные селеновые фотоэлементы нашли широкое применение в качестве фотоэкспонометров в фото- и киноаппаратуре. Однако коэффициент полезного действия фотоэлементов не поднимался выше 0,5 %.
Успешное развитие фотоэлектрического метода преобразования энергии излучения началось лишь после создания зонной теории электронного строения полупроводников, разработки методов их очистки и контролируемого легирования, выяснения той определяющей роли, которую играет запорный слой на границе полупроводников с противоположным типом проводимости.
В 1954 г. появилось краткое сообщение о разработке солнечного элемента с кпд около 6 %, а в 1958 г. на борту советских и американских спутников Земли уже работали кремниевые солнечные батареи, снабжавшие электроэнергией электронную аппаратуру·
За прошедшее время КПД солнечных элементов резко возрос, чему способствовали все лучшее понимание физических явлений, происходящих в солнечных элементах, создание все более совершенных технологических приемов их изготовления и разработка новых усовершенствованных конструкций элементов из разнообразных полупроводниковых материалов. В СССР особенно много для развития фотоэлектрического метода преобразования солнечной энергии сделали H. С. Лидоренко, А. П. Ландсман, В. С. Вавилов, Ю. П. Маслаковец, В. К. Субашиев, А. М. Васильев, Ж. И. Алферов, в США — II. Раппопорт, М. Принс, Дж. Лоферский, М. Вольф, Г. Раушенбах, Дж. Ландмайер, Г. Брандхорст.
Большинство вентильных фотоэлементов, созданных в первые десятилетия развития фотоэлектричества, — селеновые, сернистогаллиевые, сернистосеребряные, сернистомедные, германиевые и некоторые другие — используются по-прежнему в основном как индикаторы излучения. Кремниевые фотоэлементы, а в последнее время и фотоэлементы из арсенида галлия и других широкозонных полупроводников благодаря высокому КПД, достигающему в настоящее время у лучших образцов 15–22 % (а при использовании сложных каскадных систем на их основе даже 27–30 %), широко применяются как фотоэлектрические преобразователи солнечного излучения или солнечные элементы.
Фотоэлектрогенераторы для прямого преобразования энергии излучения Солнца в электрическую, собранные из большого числа последовательно и параллельно соединенных солнечных элементов, получили название солнечных батарей. Современные солнечные батареи генерируют на свету значительную электрическую мощность и применяются как для питания радиосхем, средств связи, счетчиков космических частиц, так и для энергоснабжения большинства космических аппаратов и многих наземных автономных устройств различного назначения.
Полупроводниковый, например, кремниевый, солнечный элемент наиболее распространенной конструкции представляет собой систему из двух полупроводниковых слоев с проводимостями
Уровень Ферми, определяющий равновесие между дырками и электронами, во всем материале должен быть одинаковым. Это условие обеспечивается двойным заряженным слоем в области
Рис. 2.5. Структура энергетических зон полупроводника в области неосвещенного
Высота потенциального барьера
Следует отметить, что положение уровня Ферми и, следовательно, высота потенциального барьера зависят от температуры и концентрации примесей в полупроводниковом материале по обе стороны