Читаем Солнечные элементы полностью

Усовершенствование технологии, а также применение оптических фильтров позволили получить селеновые фотоэлементы, спектральная чувствительность которых практически повторяла кривую чувствительности человеческого глаза. Улучшенные селеновые фотоэлементы нашли широкое применение в качестве фотоэкспонометров в фото- и киноаппаратуре. Однако коэффициент полезного действия фотоэлементов не поднимался выше 0,5 %.

Успешное развитие фотоэлектрического метода преобразования энергии излучения началось лишь после создания зонной теории электронного строения полупроводников, разработки методов их очистки и контролируемого легирования, выяснения той определяющей роли, которую играет запорный слой на границе полупроводников с противоположным типом проводимости.

В 1954 г. появилось краткое сообщение о разработке солнечного элемента с кпд около 6 %, а в 1958 г. на борту советских и американских спутников Земли уже работали кремниевые солнечные батареи, снабжавшие электроэнергией электронную аппаратуру·

За прошедшее время КПД солнечных элементов резко возрос, чему способствовали все лучшее понимание физических явлений, происходящих в солнечных элементах, создание все более совершенных технологических приемов их изготовления и разработка новых усовершенствованных конструкций элементов из разнообразных полупроводниковых материалов. В СССР особенно много для развития фотоэлектрического метода преобразования солнечной энергии сделали H. С. Лидоренко, А. П. Ландсман, В. С. Вавилов, Ю. П. Маслаковец, В. К. Субашиев, А. М. Васильев, Ж. И. Алферов, в США — II. Раппопорт, М. Принс, Дж. Лоферский, М. Вольф, Г. Раушенбах, Дж. Ландмайер, Г. Брандхорст.

Большинство вентильных фотоэлементов, созданных в первые десятилетия развития фотоэлектричества, — селеновые, сернистогаллиевые, сернистосеребряные, сернистомедные, германиевые и некоторые другие — используются по-прежнему в основном как индикаторы излучения. Кремниевые фотоэлементы, а в последнее время и фотоэлементы из арсенида галлия и других широкозонных полупроводников благодаря высокому КПД, достигающему в настоящее время у лучших образцов 15–22 % (а при использовании сложных каскадных систем на их основе даже 27–30 %), широко применяются как фотоэлектрические преобразователи солнечного излучения или солнечные элементы.

Фотоэлектрогенераторы для прямого преобразования энергии излучения Солнца в электрическую, собранные из большого числа последовательно и параллельно соединенных солнечных элементов, получили название солнечных батарей. Современные солнечные батареи генерируют на свету значительную электрическую мощность и применяются как для питания радиосхем, средств связи, счетчиков космических частиц, так и для энергоснабжения большинства космических аппаратов и многих наземных автономных устройств различного назначения.

Полупроводниковый, например, кремниевый, солнечный элемент наиболее распространенной конструкции представляет собой систему из двух полупроводниковых слоев с проводимостями р- и n-типа, находящихся в тесном контакте друг с другом. Переходная зона (граница) между областями с противоположными типами проводимости располагается внутри полупроводникового материала и называется, как уже упоминалось, электронно-дырочным или р-n-переходом (ранее чаще именовавшаяся запорным слоем).

Уровень Ферми, определяющий равновесие между дырками и электронами, во всем материале должен быть одинаковым. Это условие обеспечивается двойным заряженным слоем в области р-n-перехода, получившим название слоя объемного заряда, и сопровождающим его электростатическим потенциалом (рис. 2.5).

Рис. 2.5. Структура энергетических зон полупроводника в области неосвещенного р-п-перехода (а) и распределение электростатического потенциала (б)

2l — ширина области объемного заряда р-n-перехода; UEравновесный электростатичеиский потенциал на границе п- и p-областей; Eg — ширина запрещенной зоны; штриховая линия — равновесное положение уровня Ферми

Высота потенциального барьера р-n-перехода равна разности положений дна зон проводимости материалов п- и р-типов.

Следует отметить, что положение уровня Ферми и, следовательно, высота потенциального барьера зависят от температуры и концентрации примесей в полупроводниковом материале по обе стороны p-n-перехода, что, с одной стороны, открывает широкие возможности по направленному изменению свойств р-n-переходов, а с другой — определяет достаточно сильную зависимость его оптических и фотоэлектрических свойств от температуры.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука