Изгиб зон на поверхности полупроводника и разделяющий барьер можно получить также за счет оксидного слоя с сильным встроенным зарядом. Этот инверсионный слой, как, впрочем, и диффузионный легированный слой, может быть использован также для уменьшения скорости поверхностной рекомбинации на освещаемой поверхности; разделение носителей заряда в этом случае осуществляется на р+- и n+-барьерах к базовому слою, расположенных с тыльной стороны элемента, что, кстати, облегчает коммутацию элементов в группы и модули солнечной батареи с помощью печатного монтажа.
Процесс изготовления всех перечисленных моделей солнечных элементов выгодно отличается от высокотемпературной термодиффузии (800–900oC), применяемой для получения
Нанесение барьеров Шоттки или МОП-структур может быть осуществлено в едином технологическом цикле с получением контактов и просветляющих покрытий двумя способами:
все операций Проводятся в одной вакуумной камере или в ряде камер, соединенных шлюзами, с использованием трафаретных масок или «сухой» фотолитографии;
все операции осуществляются на воздухе или в среде инертного газа методами химической пульверизации, шелкографии, химического пли электрохимического нанесения.
Следует, однако, отметить, что высокие значения КПД (12–15 % в наземных условиях) солнечных элементов с барьером Шоттки, а также с МОП- и ПОП-структурами получены, как правило, с использованием изотипного
В качестве примера на рис. 4.4 представлена спектральная зависимость чувствительности и коэффициента собирания одного из солнечных элементов из монокристаллического кремния с ПОП-структурой и тонким промежуточным слоем (десятки ангстрем) оксида SiOx на поверхности кремния. Верхний прозрачный проводящий слой (пленка ITO)[8] был нанесен методом химической пульверизации из смеси оксидов индия и олова. Толщина этого слоя 700 А (при поверхностном слоевом сопротивлении около 120 Om∕□), вследствие чего он одновременно выполнял роль эффективного просветляющего покрытия. У полученных солнечных элементов при измерении на имитаторе внеатмосферного Солнца КПД составлял 10,8 %. Это значение может быть существенно увеличено путем снижения последовательного сопротивления элементов, в частности, за счет оптимизации свойств пленки ITO, а также размеров и толщины контактной сетки на верхней освещаемой поверхности элементов.
Для получения дешевых и в то же время достаточно эффективных солнечных элементов перспективно использование кремниевых слоев, полученных на графитовых пластинках или пленках (так называемого «кремния на графитовой ткани»).
Типичный процесс изготовления дешевых и высокоэффективных солнечных элементов, как показано в ряде детальных исследований, состоит из следующих этапов:
распыление расплава металлургического кремния и его очистка посредством многократного выщелачивания в водной среде;