Читаем Солнечные элементы полностью

В результате анализа полученных экспериментальных данных был сделан вывод, что в широком диапазоне энергии падающих квантов (Eg < hv < 2Eg) квантовый выход β, обусловленный фотоионизацией, в кремнии равен единице. При большой энергии квантов падающего излучения (hv>2Eg, т. е. в ультрафиолетовой области спектра) β начинал резко возрастать, что, вероятно, объясняется процессом ударной ионизации — возникновением вторичных пар электрон — дырка за счет избыточной кинетической энергии первичных пар.

Таким образом, можно считать, что первый акт взаимодействия оптического излучения с полупроводником (внутри кристалла) происходит практически без потерь с эффективностью, близкой к 100 %, в широкой области спектра,

Однако в большинстве полупроводников, использующихся для создания солнечных элементов, несмотря на равный единице квантовый выход ионизации (а также при γ>l в ультрафиолетовой области) с увеличением энергии квантов возрастают потери в расчете на энергию одного кванта в силу конечного значения ширины запрещенной зоны обычного полупроводникового материала.

Переход к солнечным элементам более сложной структуры, которые будут описаны в гл. 4 настоящей книги, например на основе каскадных систем, или к элементам с контролируемым градиентом ширины запрещенной зоны по глубине (большой у поверхности полупроводника и уменьшающейся в глубь материала, что отвечает спектральной зависимости коэффициента поглощения) позволяет полностью избавиться от таких оптических и энергетических потерь и увеличить КПД преобразования солнечного излучения в электрическую энергию.

Оптические излучения различных длин волн проникают на разную глубину (поскольку эта величина существенно зависит от энергии квантов) и создают свое пространственное распределение рожденных светом пар электрон — дырка (см. рис. 2.1).

Дальнейшая судьба рожденных пар зависит от их диффузионной длины в данном полупроводниковом материале. Если она достаточно велика, то созданные светом избыточные неосновные носители заряда успеют (даже без участия тянущего электрического поля) только за счет процесса диффузии дойти до области p-n-перехода и будут разделены его полем.

Решающую роль в эффективности этой стадии преобразования оптического излучения внутри полупроводника играет соотношение между диффузионной длиной L и расстоянием от p-n-перехода l, на котором создаются светом пары электрон — дырка.

Рассмотрим два крайних случая расположения p-n-перехода в полупроводниковом кристалле по отношению к направлению падения оптического излучения: перпендикулярно (рис. 2.6, а) и параллельно (рис. 2.6, б). Условимся, что в первом случае свет проникает на всю глубину кристалла и I равно толщине полупроводниковой пластины, а во втором — освещается вся поверхность пластинки шириной d.

Pис. 2.6. Схема расположения p-n-перехода в полупроводниковом кристалле при перпендикулярном (а) и параллельном (б) плоскости p-n-перехода падении оптического излучения

Ln, Lp — диффузионная длина неосновных носителей заряда в р- и n-областях соответственно; l — глубина проникновения света в полупроводник; заштрихованы контактные металлические слои к р- и n-областям полупроводника

Pис. 2.7. Распределение числа созданных оптическим излучением пар электрон — дырка по глубине кремния при падении излучения разной длины волны перпендикулярно плоскости p-n-перехода

1 — λ = 0,619 мкм, α = 2000 см-1; 2 — λ = 0,81 мкм; α = 700 см~1; 3 — λ = о,92 мкм; а = 90 см -1

Очевидно, что эффективность собирания для перпендикулярного и параллельного расположения p-n-перехода определяется соответственно соотношениями

γ=(Ln+Lp)/l и γ=(Ln+Lp)/d.

На первый взгляд параллельное расположение кажется более предпочтительным, ибо для полного собирания и разделения носителей наиболее существенным является распределение пар носителей в направлении, перпендикулярном p-n-переходу: равномерная генерация носителей по глубине кристалла создает благоприятные условия для их диффузии к p-n-переходу и последующего пространственного разделения.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука