Читаем Солнечная система полностью

Хондриты четко делятся на три больших класса по форме содержания железа, точнее по степени его окисленности. Хондритам этих классов дали следующие названия и обозначения: энстатитовые (Е), обыкновенные (О) и углистые (С). В том же порядке в них увеличивается содержание окисленного (двух- и трехвалентного) железа. Все хондриты поделены на шесть петрологических типов, в которых постепенно усиливаются структурные и минералогические проявления теплового метаморфизма (от 1-го к 6-му типу).

Углистые хондриты. Углистые хондриты (обозначаемые буквой «С», от англ. carbonaceous, углистый) — самые темные, чем и оправдывают свое название. Они содержат много железа, но оно почти целиком находится в связанном состоянии в силикатах. Темную окраску углистым хондритам в основном придает минерал магнетит (Fе3O4), а также небольшие количества графита, сажи и органических соединений. Эти метеориты содержат также значительную долю водосодержащих минералов или гидросиликатов (серпентин, хлорит, монтмориллонит и ряд других).

Дж. Вассон предложил в 1970-х гг. разделить углистые хондриты на четыре группы (CI, СМ, СО и CV) на основании постепенного изменения их свойств. В каждой группе есть типичный, эталонный метеорит, первая буква имени которого добавляется к индексу «С» при обозначении группы. Типичными представителями в упомянутых группах являются метеориты Ivuna, Мигеи (найден на Украине, в Николаевской обл.), Ornans и Vigarano. Несколько раньше, в 1956 г., Г. Виик предложил деление углистых хондритов на три группы (CI, СII и CIII), упоминания о которых можно иногда встретить в литературе. Группы Вассона CI и СМ полностью соответствуют группам CI и СII Виика, а группы СО и CV можно рассматривать как составляющие группы CIII.

В CI-хондритах гидратированные силикаты занимают большую часть объема. Их рентгеновские исследования показали, что преобладающим силикатом является септехлорит (общая формула септехлоритов Y6(Z4О10)(OH)8, где Y = Fe2+, Mg; Z=Si, Al, Fe3+). Причем, все гидросиликаты находятся в аморфной форме, т.е. в форме стекла. Дегидратированных силикатов (пироксенов, оливинов и др., которые появляются при температурах более 100°С) здесь вообще нет. CI-метеориты представляют собой исключение среди хондритов, поскольку их вещество вообще не содержит хондр, а состоит как бы из одной матрицы. Это подтверждает идею о кристаллизации хондр из расплавленного вещества, поскольку исследования показывают, что вещество CI-хондритов не подвергалось плавлению. Оно считается наиболее неизмененным, по сути первичным веществом Солнечной системы, сохранившимся с момента конденсации протопланетного облака. Именно этим объясняется высокий интерес ученых к CI-метеоритам.

В СМ-хондритах содержится лишь 10—15% связанной воды (в составе гидросиликатов), а в виде хондр присутствует 10—30% пироксена и оливина.

В СО- и СV-хондритах содержится всего 1% воды в связанном состоянии и преобладают пироксены, оливины и другие дегидратированные силикаты. В небольших количествах в них имеется и никелистое железо. Присутствие гидросиликатов заметно снижает плотность углистых хондритов: от 3,2 г/см3 в CV до 2,2 г/см3 в СI-метеоритах.

Обыкновенные хондриты. Обыкновенные хондриты названы так потому, что они встречаются наиболее часто в метеоритных коллекциях. Они включают в себя три химические группы: Н, L и LL (Н — от англ. high, высокий; L — от low, низкий). Метеориты этих групп похожи по ряду свойств, но отличаются по общему содержанию железа и сидерофильных элементов (Н >L>LL) и по отношению окисленного железа к металлическому (LL>L>Н). Хондриты группы Н охватывают петрологические типы от 3 до 6, а хондриты групп L и LL относятся к петрологическим типам 3—7.

Структурные и минералогические особенности обыкновенных хондритов свидетельствуют, что эти метеориты испытали тепловой метаморфизм при температурах примерно от 400°С (для низкого петрологического типа 3) до более 950°С (для типа 7) и при ударных давлениях до 1000 атм. (нарастающих при увеличении температуры). По сравнению с более «правильными» хондрами углистых хондритов хондры обыкновенных чаще имеют неправильную форму и заполнены обломочным материалом. Общее содержание железа в обыкновенных хондритах по группам меняется в следующих пределах: 18—22% (LL), 19—24% (L), 25—30% (Н). Количество металлического железа также увеличивается от группы LL к L и далее — к Н.

Перейти на страницу:

Все книги серии Астрономия и астрофизика

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука