Читаем Солнечная система (Астрономия и астрофизика) полностью

Вокруг каждой из точек L1—L5 существуют и «настоящие» периодические орбиты. Траектории вокруг лежащей дальше Луны точки L2, похожие на овал в плоскости, перпендикулярной прямой Земля-Луна, получили особое наименование гало-орбит. В будущем они сыграют важную роль в освоении Луны. На гало-орбитах разместятся спутники-ретрансляторы, позволяющие поддерживать радиосвязь между Землей и базой, расположенной на обратной стороне Луны.

На рис.11 изображена более замысловатая периодическая орбита, показывающая их богатое разнообразие. КА на такой орбите попеременно является то спутником Земли, то спутником Луны.

Рис.11

Задача о движении КА в гравитационном поле Земли и Солнца математически тождественна задаче о движении в поле Земли и Луны. Тут тоже существуют периодические орбиты и точки либрации. Более того, они уже используются на практике. Космический аппарат SOHO для исследования процессов на Солнце находится все время на гало-орбите вблизи точки L1.

Решения задачи о движении объекта в окрестности двух массивных тел оказывается очень полезным, и не только в приложении к Солнечной системе: они используются и при изучении движения вещества в двойных звездных системах, и в звездных скоплениях, и в системах галактик. Но нужно помнить, что все эти полезные решения получены при определенных предположениях. Например, точки Лагранжа существуют в рамках ограниченной задачи: два тела имеют конечные массы (любые; обе массы могут быть даже равны друг другу), а третья бесконечно мала (у нас это космический аппарат). Движение в окрестности коллинеарных точек либрации L1, L2, L3 всегда неустойчиво. Устойчивость движения в окрестности треугольных точек Лагранжа L4, L5 зависит от соотношения между массами основных тел. Обозначим массы основных тел через m1>=m2. Введем безразмерный параметр µ, выражающий отношение этих масс:

µ=m2/(m1+m2)

А.М. Ляпунов доказал, что движение в окрестности треугольных точек либрации устойчиво в первом приближении при 27µ(1—µ)<1, что равносильно условию

µ<µ0=0,0385209.

Для системы Земля-Луна µ<(1/3)/µ0, значит, треугольные точки либрации устойчивы (при отсутствии не учтенных в задаче возмущений!). А вот для системы Плутон-Харон µ>3,7µ0. Устойчивости нет. В системах двойных звезд, как правило, µ>µ0 и движение неустойчиво.

Импульсные перелеты

Итак, у нас в запасе внушительный набор орбит, по которым можно двигаться долго-долго, не затрачивая ни малейших усилий. Но как попасть туда? Будем считать, что мы уже вышли в космос на круговую орбиту искусственного спутника Земли. А теперь нам надо перейти на более высокую орбиту. Тоже круговую и лежащую в той же плоскости. Имея супер-ракету, можно перелететь с орбиты на орбиту множеством способов. Но современные ракеты пока не позволяют развивать скорости в сотни километров в секунду, так что не все способы реализуемы. А поскольку каждый лишний грамм груза на борту — все равно что кирпич в рюкзаке у туриста, из возможных способов следует выбрать оптимальный, т.е. требующий минимального количества топлива.

Реактивные двигатели работают без перерыва несколько минут, тогда как перелеты длятся часы, а межпланетные — месяцы и годы. Так что можно считать без большой ошибки, что космический корабль практически мгновенно получает добавку скорости (как говорят, к аппарату прикладывается импульс скорости). Чтобы уйти с орбиты старта, нужен по крайней мере один импульс 1. Чтобы остаться на орбите финиша — еще один 2. Так называемая характеристическая скорость 1+2, а с ней и расход топлива, будут минимальными, если импульсы прикладывать по касательным (рис.12). Это было доказано еще в 1920-е гг. В. Гоманом в Германии и Ф.А. Цандером у нас.

Рис.12

В космосе все движения обратимы. Точнее, если все скорости всех тел изменить на противоположные, то они будут двигаться по тем же орбитам, но в противоположную сторону. В частности, если все стрелки на рис.12 перевернуть, то получим тоже допустимые движения. Это значит, что оптимальный перелет с высокой на низкую орбиту — тот же эллипс Гомана-Цандера с теми же импульсами 2 и 1, но на этот раз не разгонными, а тормозными, в результате чего в дальнейшем можно ограничиться перелетами на более высокие орбиты.

Отнюдь не всегда начальная и конечная орбиты лежат в одной плоскости. Существенное изменение плоскости орбиты — задача, непосильная для современных ракет (опять космический парадокс: автомобилю трудно забираться на гору, но ничего не стоит свернуть направо). Действительно, чтобы повернуть плоскость орбиты на 60°, по правилу векторного сложения скоростей требуется импульс, равный скорости движения КА, т.е. 8 км/с для низких спутников Земли.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука